首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6157篇
  免费   411篇
  国内免费   502篇
  7070篇
  2024年   15篇
  2023年   88篇
  2022年   107篇
  2021年   124篇
  2020年   144篇
  2019年   179篇
  2018年   212篇
  2017年   159篇
  2016年   163篇
  2015年   161篇
  2014年   267篇
  2013年   378篇
  2012年   159篇
  2011年   273篇
  2010年   208篇
  2009年   262篇
  2008年   322篇
  2007年   326篇
  2006年   274篇
  2005年   258篇
  2004年   214篇
  2003年   194篇
  2002年   161篇
  2001年   121篇
  2000年   134篇
  1999年   136篇
  1998年   105篇
  1997年   140篇
  1996年   113篇
  1995年   120篇
  1994年   122篇
  1993年   115篇
  1992年   100篇
  1991年   101篇
  1990年   102篇
  1989年   87篇
  1988年   92篇
  1987年   67篇
  1986年   77篇
  1985年   92篇
  1984年   126篇
  1983年   94篇
  1982年   98篇
  1981年   82篇
  1980年   76篇
  1979年   56篇
  1978年   19篇
  1977年   13篇
  1976年   8篇
  1973年   10篇
排序方式: 共有7070条查询结果,搜索用时 23 毫秒
31.
32.
Grabo  T.  Kreibich  T.  Gross  E.K.U. 《Molecular Engineering》1997,7(1-2):27-50
We describe the optimized effective potential method of density functional theory and the semi-analytical approximation due to Krieger, Li and Iafrate. Results for atomic and molecular systems including correlation contributions are presented and compared with conventional Kohn–Sham methods. The combination of the exact exchange energy functional with the correlation energy functional of Colle and Salvetti works extremely well for atomic systems, while further improvement is required for molecular systems.  相似文献   
33.
Much empirical evidence suggests that there is an optimal body size for mammals and that this optimum is in the vicinity of l00g. This presumably reflects an underlying fitness function that is greatest at this mass. Here, I combine such a fitness function with an equilibrium model of competitive character displacement to assess the potential influence of a globally optimal body size in structuring local ecological communities. The model accurately predicts the range of body sizes and the average difference in size for species in communities of varying species richness. The model also predicts a uniform spacing of body sizes, rather than the gaps and clumps in the sizes of coexisting species observed in real communities. Alternative explanations for this phenomenon are discussed. The allometric relationships that result in a body size optimum subsume a large number of characteristics associated with the physiological, behavioral, demographic, and evolutionary dynamics of the species. Further integration of the underlying dynamics (e.g. individual energetics) of these relationships into all hierarchical levels of ecology will have to incorporate multiple interactive sites, spatial heterogeneity, and phylogenetic structure, but it has the potential to provide important discoveries into the means by which natural selection operates.  相似文献   
34.
We have previously reported that ischemia reperfusion injury results from free radical generation following transient global ischemia, and that this radical induced damage is evident in the synaptosomal membrane of the gerbil. [Hall et al, (1995) Neuroscience 64: 81–89] In the present study we have extended these observations to transient focal ischemia in the cat. We prepared synaptosomal membranes from frontal, parietal-temporal, and occipital regions of the cat cerebral cortex with reperfusion times of 1 and 3 hours following 1 hour right middle cerebral artery occlusion. The membranes were selectively labeled with protein and lipid specific paramagnetic spin labels and analyzed using electron paramagnetic resonance spectrometry. There were significant motional changes of both the protein and lipid specific spin labels in the parietal-temporal and occipital regions with 1 hour reperfusion; but, both parameters returned to control values by 3 hours reperfusion. No significant changes were observed in the normally perfused frontal pole at either reperfusion time. These results support the argument that free radicals play a critical role in cell damage at early reperfusion times following ischemia.  相似文献   
35.
Staining of living bacteria with rhodamine 123   总被引:5,自引:0,他引:5  
Abstract It is possible to stain live bacteria with rhodamine 123 (R123). The stained fluorescent cells still keep the ability to replicate ( Staphylococcus aureus, Bordetella pertussis ) and to swim (e.g., Salmonella minnesota ). Dead cells or cells with a dissipated transmembrane potential showed markedly diminished fluorescence. Gram-negative strains were stained with different efficiency, presumably reflecting the different constitutions of the outer membrane.  相似文献   
36.
The distribution ratio of the lipophilic cation dibenzyldimethylammonium between the cells of Saccharomyces cerevisiae and the medium appears to reflect changes in the membrane potential in a way that is qualitatively correct: the addition of a proton conductor or of an agent which blocks metabolism causes an apparent depolarization of the cell membrane; monovalent cations cause also a lowering of the equilibrium distribution, whereas the addition of divalent cations results in an increase of the partition ratio.However, uptake of dibenzyldimethylammonium and probably also of other liophilic cations proceeds via the thiamine transport system of the yeast. Dibenzyldimethylammonium transport is inducible, like thiamine transport. A kinetic analysis of the mutual interaction between thiamine and dibenzyldimethylammonium uptake shows that these compounds share a common transport system; moreover, dibenzyldimethylammonium uptake is inhibited completely by thiamine disulfide, a competitive inhibitor of thiamine transport and dibenzyldimethylammonium uptake in a thiamine-transport mutant is reduced considerably.It is concluded that one should be cautious when using lipophilic cations to measure the membrane potential of cells of S. cerevisiae.  相似文献   
37.
W. Moody  E. Zelger 《Planta》1978,139(2):159-165
Intracellular electrical recordings in onion (Allium cepa L.) guard cells show that they maintain a membrane potential difference (MPD), inside negative. The MPD of intact cells averaged -72±29 mV (n=45); MPD of cells partially digested with a cellulolytic enzyme, -39±7 mV (n=65). Evidence indicates that the guard cells have two electrically distinct compartments, presumably delimited by the plasmalemma and tonoplast. Epidermal cells in partially digested preparations also showed MPD that could be either positive (+15±7 mV; n=23) or negative (-15 ±8 mV; n=13). Guard cells exposed to light-dark cycles hyperpolarized in the light and depolarized in the dark. The largest observed voltage changes reached 52 mV during hyperpolarizations and 60 mV during depolarizations. The light responses saturated with roughly exponential kinetics, with the depolarizations exhibiting a slower second phase that might be related to the contracting movements of the guard cells. Initial rates of the responses averaged about 14 mV min-1 in the dark and about 8 mV min-1 in the light. The results can be interpreted as electrical correlates of fluctuations in intracellular potassium concentration, as light-induced changes in membrane permeability, or as the photoactivation of an electrogenic proton pump. The last possibility seems to be the simplest interpretation of the data that also provides us with a mechanism driving the ion fluxes associated with stomatal function.  相似文献   
38.
Summary A knowledge of the relationship between ion flow, both passive and active, ionic concentration, and membrane potential is essential to the understanding of cellular function. The problem has been analyzed on the basis of elementary physical and biophysical principles, providing a theoretical model of current flow and resting potential of cells, including those in epithelia. The model assumes that the permeability of the ion channets is not voltage dependent, but applies to gated channels when the gates are open. Two sources of nonlinearity of the current-voltage relationship are included in the analysis: ionic depletion and accumulation at the channels' mouths, and channel saturation at higher concentrations. The predictions of the model have been quantitative, validated by comparison with experiment, which has been limited to the only two cases in which adequate data was found. Application of the theory to the scala media of the mammalian cochlea has explained the source of its high positive potential and provided estimates of the Na+ and K+ permeabilities of the membranes of its marginel cess. This analysis provides a theoretically sound alternative to the widely used Goldman equation, the limited validity of which was emphasized by Goldman (D.E. Goldman, 1943,J. Gen. Physiol.27:37–60), as well as its derivatives, including the Goldman-Hodgkin-Katz equation for resting potentials.  相似文献   
39.
40.
The membrane potential generated at pH 8.5 by K+-depleted and Na+-loaded Vibrioalginolyticus is not collapsed by proton conductors which, instead, induce the accumulation of protons in equilibrium with the membrane potential. The generation of such a membrane potential and the accumulation of protons are specific to Na+-loaded cells at alkaline pH and are dependent on respiration. Extrusion of Na+ at pH 8.5 occurs in the presence of proton conductors unless respiration is inhibited while it is abolished by proton conductors at acidic pH. The uptake of α-aminoisobutyric acid, which is driven by the Na+-electrochemical gradient, is observed even in the presence of proton conductors at pH 8.5 but not at acidic pH. We conclude that a respiration-dependent primary electrogenic Na+ extrusion system is functioning at alkaline pH to generate the proton conductor-insensitive membrane potential and Na+ chemical gradient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号