全文获取类型
收费全文 | 6563篇 |
免费 | 637篇 |
国内免费 | 275篇 |
专业分类
7475篇 |
出版年
2024年 | 28篇 |
2023年 | 194篇 |
2022年 | 288篇 |
2021年 | 396篇 |
2020年 | 369篇 |
2019年 | 595篇 |
2018年 | 438篇 |
2017年 | 247篇 |
2016年 | 266篇 |
2015年 | 404篇 |
2014年 | 471篇 |
2013年 | 619篇 |
2012年 | 314篇 |
2011年 | 359篇 |
2010年 | 257篇 |
2009年 | 326篇 |
2008年 | 279篇 |
2007年 | 289篇 |
2006年 | 276篇 |
2005年 | 214篇 |
2004年 | 195篇 |
2003年 | 168篇 |
2002年 | 147篇 |
2001年 | 85篇 |
2000年 | 66篇 |
1999年 | 51篇 |
1998年 | 46篇 |
1997年 | 26篇 |
1996年 | 24篇 |
1995年 | 12篇 |
1994年 | 5篇 |
1993年 | 8篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有7475条查询结果,搜索用时 10 毫秒
81.
82.
Involvement of dying beta cell originated messenger molecules in differentiation of pancreatic mesenchymal stem cells under glucotoxic and glucolipotoxic conditions 下载免费PDF全文
83.
84.
Jelena Petrovic Yeqiao Zhou Maria Fasolino Naomi Goldman Gregory W. Schwartz Maxwell R. Mumbach Son C. Nguyen Kelly S. Rome Yogev Sela Zachary Zapataro Stephen C. Blacklow Michael J. Kruhlak Junwei Shi Jon C. Aster Eric F. Joyce Shawn C. Little Golnaz Vahedi Warren S. Pear Robert B. Faryabi 《Molecular cell》2019,73(6):1174-1190.e12
85.
86.
87.
Syed Muhammad Hamid Mevlut Citir Erdem Murat Terzi Ismail Cimen Zehra Yildirim Asli Ekin Dogan Begum Kocaturk Umut Inci Onat Moshe Arditi Christian Weber Alexis TraynorKaplan Carsten Schultz Ebru Erbay 《EMBO reports》2020,21(12)
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions. 相似文献
88.
Chia‐Yi Cheng Dennis E. Mathews G. Eric Schaller Joseph J. Kieber 《The Plant journal : for cell and molecular biology》2013,73(6):929-940
The life cycle of higher plants alternates between the diploid sporophytic and the haploid gametophytic phases. In angiosperms, male and female gametophytes develop within the sporophyte. During female gametophyte (FG) development, a single archesporial cell enlarges and differentiates into a megaspore mother cell, which then undergoes meiosis to give rise to four megaspores. In most species of higher plants, including Arabidopsis thaliana, the megaspore closest to the chalaza develops into the functional megaspore (FM), and the remaining three megaspores degenerate. Here, we examined the role of cytokinin signaling in FG development. We characterized the FG phenotype in three triple mutants harboring non‐overlapping T–DNA insertions in cytokinin AHK receptors. We demonstrate that even the strongest mutant is not a complete null for the cytokinin receptors. Only the strongest mutant displayed a near fully penetrant disruption of FG development, and the weakest triple ahk mutant had only a modest FG phenotype. This suggests that cytokinin signaling is essential for FG development, but that only a low threshold of signaling activity is required for this function. Furthermore, we demonstrate that there is elevated cytokinin signaling localized in the chalaza of the ovule, which is enhanced by the asymmetric localization of cytokinin biosynthetic machinery and receptors. We show that an FM‐specific marker is absent in the multiple ahk ovules, suggesting that disruption of cytokinin signaling elements in Arabidopsis blocks the FM specification. Together, this study reveals a chalazal‐localized sporophytic cytokinin signal that plays an important role in FM specification in FG development. 相似文献
89.
RGMb/DRAGON为RGM家族成员之一,在许多组织和器官中存在并表达.最初它作为粘附分子在神经系统中调节轴突排斥被发现.近来研究发现,它还是BMP的辅助受体,与BMP配体和受体结合,通过调控BMP信号通路在繁殖、肾脏机能的维持以及免疫疾病等生理和病理条件下发挥重要作用.本文评述了RGMb的基因及蛋白结构特征、表达定位及其在神经系统中的作用,并重点介绍了其在BMP信号通路中的作用机制和生物学研究进展. 相似文献
90.
Antonio Díaz-Cruz Raquel Guinzberg Ruy Guerra Magdalena Vilchis Daniel Carrasco Francisco J. García-vázquez 《Free radical research》2013,47(6):663-672
It is known that adrenaline promotes hydroxyl radical generation in isolated rat hepatocytes. The aim of this work was to investigate a potential role of NADPH oxidase (Nox) isoforms for an oxidative stress signal in response to adrenaline in hepatocytes. Enriched plasma membranes from isolated rat liver cells were prepared for this purpose. These membranes showed catalytic activity of Nox isoforms, probably Nox 2 based on its complete inhibition with specific antibodies. NADPH was oxidized to convert O2 into superoxide radical, later transformed into H2O2. This enzymatic activity requires previous activation with either 3 mM Mn2+ or guanosine 5′-0-(3-thiotriphosphate) (GTPγS) plus adrenaline. Experimental conditions for activation and catalytic steps were set up: ATP was not required; S0.5 for NADPH was 44 μM; S0.5 for FAD was 8 μM; NADH up to 1 mM was not substrate, and diphenyleneiodonium was inhibitory. Activation with GTPγS plus adrenaline was dose- and Ca2+-dependent and proceeded through α1-adrenergic receptors (AR), whereas β-AR stimulation resulted in inhibition of Nox activity. These results lead us to propose H2O2 as additional transduction signal for adrenaline response in hepatic cells. 相似文献