首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   68篇
  国内免费   76篇
  2023年   19篇
  2022年   23篇
  2021年   36篇
  2020年   24篇
  2019年   36篇
  2018年   40篇
  2017年   30篇
  2016年   24篇
  2015年   38篇
  2014年   49篇
  2013年   74篇
  2012年   43篇
  2011年   67篇
  2010年   49篇
  2009年   65篇
  2008年   59篇
  2007年   83篇
  2006年   84篇
  2005年   65篇
  2004年   68篇
  2003年   70篇
  2002年   57篇
  2001年   32篇
  2000年   60篇
  1999年   29篇
  1998年   34篇
  1997年   37篇
  1996年   29篇
  1995年   28篇
  1994年   26篇
  1993年   27篇
  1992年   13篇
  1991年   19篇
  1990年   21篇
  1989年   18篇
  1988年   21篇
  1987年   12篇
  1986年   10篇
  1985年   28篇
  1984年   26篇
  1983年   10篇
  1982年   13篇
  1981年   5篇
  1980年   10篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1970年   1篇
排序方式: 共有1636条查询结果,搜索用时 515 毫秒
61.
CONSTANS(CO)及CONSTANS-like(COL)基因在光周期调控植物开花中起到重要的作用。该研究以文心兰(Oncidium)品种‘金辉’为材料,分离了CO同源基因OnCOL2及另外2个COL基因(OnCOL8和OnCOL9),它们分别编码326、411和291个氨基酸;生物信息分析预测它们均定位于细胞核;OnCOL2、OnCOL8有2个锌指B-box结构域和1个CCT结构域,而OnCOL9缺少B-box结构域。多序列比对及进化树分析结果表明,所有COL蛋白可划分为3组,OnCOL2与OnCOL8、OnCOL9分到了2个不同组中。OnCOL2与建兰(Cymbidium ensifolium)CeCOL(90.77%)高度相似;OnCOL8与OnCOL9在进化关系上更为接近,分别与拟南芥(Arabidopsis thaliana)AtCOL9和AtCOL10关系最近,它们在B-box和CCT结构域都极为保守。表达分析结果表明OnCOL2、OnCOL8与OnCOL9分别在花、根和假鳞茎中表达量最高,在叶片中的表达呈周期性变化趋势,且在长、短日照条件下表达的峰值及时间均存在差异,在花芽分化时期的叶片中表达量均显著上调。研究表明,OnCOL2、OnCOL8与OnCOL9基因均受到生物钟和日长调节,在光周期途径中,可能通过上调它们的表达以促进文心兰花芽的形成。该研究结果为进一步研究基因功能及光周期调控文心兰开花机制奠定了基础。  相似文献   
62.
Background and AimsRoot sprouting (RS), i.e. the ability to form adventitious buds on roots, is an important form of clonal growth in a number of species, and serves as both a survival strategy and a means of spatial expansion, particularly in plants growing in severely and recurrently disturbed habitats. Occurrence and/or success of plants in severely and recurrently disturbed habitats are determined by two components, namely the ability to produce adventitious buds on roots and the vigour of their production. As mechanisms behind different magnitudes of RS remain unclear, our study investigates: (1) whether the presence or absence of specific tissues in roots can promote or limit RS; and (2) whether there is some relationship between RS ability, RS vigour and species niche.MethodsWe studied RS ability together with RS vigour in 182 Central European herbaceous species under controlled experimental conditions. We used phylogenetic logistic regressions to model the presence of RS, RS vigour, the relationship between RS and anatomical traits and the relationship between RS and parameters of species niches.Key ResultsA quarter of herbs examined were able to produce adventitious buds on roots. They were characterized by their preference for open dry habitats, the presence of secondary root thickening and the occurrence of sclerified cortical cells in roots. Root sprouting vigour was not associated with any specific anatomical pattern, but was correlated with the environmental niches of different species, indicating that preferred disturbed and dry habitats might represent a selection pressure for more vigorous root sprouters than undisturbed and wet habitats.ConclusionsOur study shows that sprouting from roots is quite common in temperate dicotyledonous herbs. Two components of RS – ability and vigour – should be considered separately in future studies. We would also like to focus more attention on RS in herbs from other regions as well as on external forces and internal mechanisms regulating evolution and the functions of RS in both disturbed and undisturbed habitats.  相似文献   
63.
以普通油茶(Camellia oleifera) 4个无性系为材料,结合油茶成花的动态观察和花芽分化过程的石蜡切片形态观察,采用酶联免疫吸附分析法测定花芽中玉米素核苷(ZR)、脱落酸(ABA)、生长素(IAA)、赤霉素(GA) 4种内源激素含量,探讨油茶花芽分化与内源激素的关系。油茶花芽分化过程可分为6个时期:前分化期(10 d)、萼片形成期(20 d)、花瓣形成期(30 d)、雌雄蕊形成期(20 d)、子房与花药形成期(10 d)和雌雄蕊成熟期(20 d),历时3~4个月。油茶不同无性系的花芽分化时间略有不同。油茶花芽中ZR含量相对较低(5.102~16.412 ng·g–1 FW),ABA含量相对较高(76.815~137.648 ng·g–1 FW)。其中,粤华5号和湘林8号的ZR、ABA含量变化趋势一致,岑软3号和岑软2号含量变化趋势一致。油茶花芽中IAA含量相对较高,为49.072~135.622 ng·g–1 FW,随着花芽分化进程,IAA含量均呈先升后降再升的变化趋势。GA含量相对较低,为5.616~13.720 ng·g–1 FW,随时间变化,呈现出不断降低的趋势。其中,不同无性系的IAA、GA含量变化趋势一致,而ZR、ABA含量变化趋势有所差异。ZR有利于花器官形成;高浓度IAA促进油茶花芽分化,低浓度IAA有利于开花;花芽中IAA与ABA存在明显的颉颃作用;GA抑制花芽分化。  相似文献   
64.
The cell cycle plays an important role in the development and adaptation of multicellular organisms; specifically, it allows them to optimally adjust their architecture in response to environmental changes. Kip-related proteins (KRPs) are important negative regulators of cyclin-dependent kinases (CDKs), which positively control the cell cycle during plant development. The Arabidopsis genome possesses seven KRP genes with low sequence similarity and distinct expression patterns; however, why Arabidopsis needs seven KRP genes and how these genes function in cell cycle regulation are unknown. Here, we focused on the characterization of KRP3, which was found to have unique functions in the shoot apical meristem (SAM) and leaves. KRP3 protein was localized to the SAM, including the ground meristem and vascular tissues in the ground part of the SAM and cotyledons. In addition, KRP3 protein was stabilized when treated with MG132, an inhibitor of the 26S proteasome, indicating that the protein may be regulated by 26S proteasome-mediated protein degradation. KRP3-overexpressing (KRP3 OE) transgenic plants showed reduced organ size, serrated leaves, and reduced fertility. Interestingly, the KRP3 OE transgenic plants showed a significant reduction in the size of the SAM with alterations in cell arrangement. In addition, compared to the wild type, the KRP3 OE transgenic plants had a higher DNA ploidy level in the SAM and leaves. Taken together, our data suggest that KRP3 plays important regulatory roles in the cell cycle and endoreduplication in the SAM and leaves.  相似文献   
65.
Abstract

The process of primary growth in 2-year-old seedlings of 11 populations of Pinus halepensis Mill. is described. At the end of the first growing season one type of apical structure was observed: type-1, a tuft of primary needles placed close together, surrounding and protecting a meristematic apex.

At the end of the 2nd growing season, three types of apical structure were observed: type-1; type-2, a terminal winter bud; and type-3; a «bud» with characteristics of both type-1 and type-2.

Morphological observation along with an anatomical examination of the winter bud led to the conclusion that the definitive growth pattern in juvenile P. halepensis is monocyclic with a variable number of summer shoots. This growth pattern is reached by some P. halepensis populations in 3–4 years, by contrast, in other pine species two years are usually needed.

The populations studied differed both in growth potential (differences in number of cycles, ratio of first cycle to total growth, growth rates) and in the developmental stages of the apical meristem.

Four groups could be identified: (i) Morocco and Spain, (a limited growth, few cycles, a high ratio of 1st cycle to total growth, and growth in 2nd season almost entirely due to free growth); (ii) Algeria and Greece, (moderate to low growth, a large number of cycles, a low ratio of 1st cycle to total growth, and very early formation of apical structure with preformed primordia); (iii) Israel and Central Italy (a high growth, a large number of cycles, a medium ratio of 1st cycle to total growth, and early formation of apical structure with preformed primordia); (iiii) Greece, France and Italy, which was intermediate between group (i) and the other 2 groups.  相似文献   
66.
以江西铅山红芽芋脱毒苗为试材,研究不同因素对红芽芋脱毒苗球茎愈伤组织诱导及其再生体系的影响,以期对红芽芋脱毒苗的再生体系进行优化。结果表明,红芽芋脱毒苗球茎愈伤组织诱导的最佳培养基是MS+TDZ 2 mg·L-1+2,4-D 1 mg·L-1。红芽芋脱毒苗球茎愈伤组织分化的最佳培养基是MS+TDZ 2 mg·L-1+NAA 1 mg·L-1。红芽芋脱毒苗不定芽生根的最佳培养基是1/2MS+NAA 0.5 mg·L-1+PP333 0.5 mg·L-1。红芽芋再生苗最好的移栽基质为发酵后的腐锯木屑。红芽芋脱毒苗球茎愈伤组织再生苗移栽时最佳的PP333浓度为20~50 mg·L-1。本试验成功建立了红芽芋脱毒苗球茎愈伤组织的再生体系,为红芽芋脱毒苗转基因的研究和种质创新奠定了基础。  相似文献   
67.

Background and Aims

The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions.

Methods

Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data.

Key Results

The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase.

Conclusions

The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.  相似文献   
68.
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror‐symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号