首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   68篇
  国内免费   76篇
  2023年   19篇
  2022年   23篇
  2021年   36篇
  2020年   24篇
  2019年   36篇
  2018年   40篇
  2017年   30篇
  2016年   24篇
  2015年   38篇
  2014年   49篇
  2013年   74篇
  2012年   43篇
  2011年   67篇
  2010年   49篇
  2009年   65篇
  2008年   59篇
  2007年   83篇
  2006年   84篇
  2005年   65篇
  2004年   68篇
  2003年   70篇
  2002年   57篇
  2001年   32篇
  2000年   60篇
  1999年   29篇
  1998年   34篇
  1997年   37篇
  1996年   29篇
  1995年   28篇
  1994年   26篇
  1993年   27篇
  1992年   13篇
  1991年   19篇
  1990年   21篇
  1989年   18篇
  1988年   21篇
  1987年   12篇
  1986年   10篇
  1985年   28篇
  1984年   26篇
  1983年   10篇
  1982年   13篇
  1981年   5篇
  1980年   10篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1975年   6篇
  1970年   1篇
排序方式: 共有1636条查询结果,搜索用时 125 毫秒
21.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   
22.
A radioimmunoassay, combined with high-performance liquid chromatography, has been used to analyse the zeatin-type cytokinins of potato (Solanum tuberosum L. cv. Majestic) tubers and tuber buds throughout growth and storage. During tuber growth, zeatin riboside was the predominant cytokinin detected in all tissues. Immediately after harvest, the total cytokinin concentration fell dramatically in the storage tissue, largely as a consequence of the disappearance of zeatin riboside. During storage, levels of cytokinins in the storage tissue remained relatively constant, but increased in the tuber buds. In the buds of tubers stored at 2°C there was a 20-to 50-fold increase in total cytokinin over six weeks, coinciding with the natural break of innate dormancy. At 10°C the rise in the level of bud cytokinins was slower, correlating with the longer duration of innate dormancy. Injecting unlabelled cytokinins into tubers in amounts known to induce sprouting gave rise to increases in cytokinin concentrations in the buds of the same order as the increase associated with the natural break of dormancy. Metabolism of injected cytokinins was greater in non-dormant than in dormant tubers. The roles of cytokinin concentration and the sensitivity of the buds to cytokinin in the control of dormancy are discussed.Abbreviations CK cytokinin - FW fresh weight - HPLC high-performance liquid chromatography - RIA radioimmunoassay - tio6ade 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-purine=zeatin - tio6adeglc9 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-glucopyranosyl purine=zeatin-9-glucoside - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-ribofuranosyl purine=zeatin riboside - tio6ado-[3H]-diol a radioactive derivative of zeatin riboside, synthesised by periodate-oxidation followed by [3H]NaBH4-reduction - tio6AMP 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-5-phosphoribofuranosyl purine=zeatin riboside 5-monophosphate - t(ioglc4)6ade 6-(4-O--D-glucopyranosyl-3-methylbut-trans-2-enylamino)-purine=zeatin-O-glucoside  相似文献   
23.
Callus cultures were initiated from apical meristem explants of one to four-week-old aseptically-grown barley (Hordeum vulgare L. cv. Atlas 57) plants. Embryogenic callus and plants were produced in three separate experiments; the cultures have retained regenerative capacity for three years after initiation. Our results demonstrate that explants other than immature embryos are embryogenically competent in barley and that regeneration occurs by both somatic embryogenesis and organogenesis.  相似文献   
24.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   
25.
The apical cells of Sphacelaria tribuloides Menegh. are larger than other thallus cells, contain more organelles and appear polarized. Their tip portion, where they grow, contains a well developed Golgi apparatus, abundant endoplasmic reticulum (ER) membranes, mitochondria, chloroplasts and a large number of small vacuoles. It seems likely that a continuous flow of membranous material from the ER membranes to the dictyosomes and from the latter to the plasmalemma of the extending tip portion takes place. In contrast, the basal pole possesses fewer organelles and is occupied mainly by large-sized, sometimes central vacuoles. The apical cells undergo two distinct types of highly asymmetrical differential divisions giving rise to cells of the thallus and hair initials. During the early stages of mitosis the nuclear envelope remains intact, except for fenestrated poles. Microtubules pass through the fenestrae into the nucleoplasm. During meta-phase, a typical chromosome plate is organized. The sites of attachment of spindle microtubules to the chromosomes are structurally different from the rest of the chromosomes. At late anaphase, the nuclear envelope breaks down completely. During telophase, a new membrane encloses the chromosomes which are decondensed and the nucleoli are reorganized. Cytokinesis proceeds long after mitosis at a stage in which the nuclei have increased in size and have moved farther apart. A membranous furrow develops centripetally, without the participation of microtubules. However, microtubules traverse the thin cytoplasmic strands which, in both interphase and cytokinetic cells, meander among the vacuoles of the basal pole of the cell and the internuclear space. Dictyosomes appear to be involved in the subsequent wall deposition.  相似文献   
26.
伊贝母体细胞无性系的建立及其胚状体的发生   总被引:3,自引:0,他引:3  
本文报道了伊贝母体细胞无性系的建立及其胚状体的发生。已继代培养三年零六个月共30多代的鳞芽愈伤组织,目前仍有分化能力。通过愈伤组织形态细胞学的观察,发现伊贝母体细胞无性系形成小鳞茎的途径有二:一是由特化了的愈伤组织表皮细胞。经多次分裂发育成不定芽而形成小鳞茎;二是由愈伤组织表层或内层特化了的胚性细胞,经多次分裂发育成胚状体而形成小鳞茎。不定芽和胚状体的形态发生是有区别的。  相似文献   
27.
We studied the effects of various polyamines on bud regeneration in thin-layer tissue explants of vegetative and floweringNicotiana tabacum L. cv. Wisconsin 38, in which application of exogenous spermidine (Spd) to vegetative cultures causes the initiation and development of some flower buds (Kaur-Sawhney et al. 1988 Planta173, 282). We now show that this effect is dependent on the time and duration of application, Spd being required from the start of the cultures for about three weeks. Neither putrescine nor spermine is effective in the concentration range tested. Spermidine cannot replace kinetin (N6-furfurylaminopurine) in cultures at the time of floral bud formation, but once the buds are initiated in the presence of kinetin, addition of Spd to the medium greatly increases the number of floral buds that develop into normal flowers. Addition of Spd to similar cultures derived from young, non-flowering plants did not cause the appearance of floral buds but rather induced a profusion of vegetative buds. These results indicate a morphogenetic role of Spd in bud differentiation. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   
28.
Hydrilla verticillata (L. f.) Royle tubers from monoecious plants andPotamogeton gramineus L. winter buds were sprouted and allowed to grow in the dark for 120 days. We measured plant length and counted the number of leaves at 2–3 day intervals.Hydrilla grew most rapidly during the first 16–17 days andPotamogeton grew most rapidly during the first 16–25 days. Measurement of propagule carbon content over time indicated that cessation of rapid growth coincided with depletion of tuber carbon by one-half forHydrilla. ForPotamogeton, growth was reduced after 16 to 25 days while the winter bud C half-life was 37 days. Calculations indicated thatHydrilla mobilized 49% andPotamogeton 39% of the initial propagule carbon to support growth. In a second experiment, in which plants were grown in substrate the plants grew taller and produced slightly more leaves per plant.Potamogeton removed from darkness after specified time periods, and allowed to grow for 21 days in a greenhouse recovered from 20–30 days in the dark. Similarly treatedHydrilla plants recovered from up to 80 days in the dark.Potamogeton had mobilized 79% of initial C by the time it was unable to recover from the dark treatment. Combined results for both species indicate that the majority of propagule C was utilized in the first 16 to 30 days following sprouting. In conjunction with an understanding propagule sprouting requirements, this information will be useful in the timing of application for management techniques. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   
29.
30.
The effects of environmental conditions on ear-shoot initiation have been investigated in three inbred genotypes of Zea mays L. which are used for seed production. Scanning electron microscopy (SEM) and binocular examination during the vegetative phase showed that axillary meristems are initiated at the same rate as the leaf primordia on the apical meristem, but with a delay of 5.6–7.0 plastochrons, depending on the genotype. Furthermore, the topmost axillary meristem is initiated on the same day as the tassel, whatever the genotype. One of the inbreds (B22) used in this study has been reported to exhibit, in field conditions, a reproductive failure affecting car initiation, causing the topmost car to be replaced at maturity by a sterile, leaf-like, structure. Scanning electron microscopic study of the formation of the abnormal axillary buds indicated that ear failure resulted from the early collapse of the axillary meristem followed by elongation of the prophyll or of the meristem itself. Using controlled environments, ear abortion was mimicked by a chilling treatment (10°C), given just before tassel initiation. Other factors, such as high irradiance and flooding, enhanced the abortive response. The critical stage for the main car was just before the initiation of the topmost axillary meristem which also corresponded to tassel initiation. Chilling the plants before or after tassel initiation either induced an acclimation response or had no effect. The three inbreds showed differential responses to the stress treatment, indicating that a genetic factor is implicated as well. It is suggested that chilling causes a perturbation of apical dominance which, in the responsive genotypes, represses axillary meristem development. The use of a stress-sensitive inbred such as B22 as a model system could yield some interesting clues to the mechanism of endogenous control of ear initiation in maize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号