首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   55篇
  国内免费   82篇
  2024年   1篇
  2023年   8篇
  2022年   7篇
  2021年   18篇
  2020年   23篇
  2019年   14篇
  2018年   15篇
  2017年   20篇
  2016年   28篇
  2015年   22篇
  2014年   40篇
  2013年   48篇
  2012年   26篇
  2011年   27篇
  2010年   21篇
  2009年   27篇
  2008年   35篇
  2007年   44篇
  2006年   26篇
  2005年   39篇
  2004年   25篇
  2003年   36篇
  2002年   22篇
  2001年   34篇
  2000年   35篇
  1999年   46篇
  1998年   20篇
  1997年   20篇
  1996年   23篇
  1995年   21篇
  1994年   21篇
  1993年   13篇
  1992年   18篇
  1991年   13篇
  1990年   18篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   6篇
  1985年   14篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   8篇
  1980年   1篇
  1979年   5篇
排序方式: 共有936条查询结果,搜索用时 15 毫秒
141.
1 Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2 The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3 Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4 Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales‐infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5 Our findings indicate that S. avenae populations can be controlled using conservation biological control  相似文献   
142.
The interactions between herbivorous insects and their symbiotic micro-organisms can be influenced by the plant species on which the insects are reared, but the underlying mechanisms are not understood. Here, we identify plant nutrients, specifically amino acids, as a candidate factor affecting the impact of symbiotic bacteria on the performance of the phloem-feeding aphid Aphis fabae. Aphis fabae grew more slowly on the labiate plant Lamium purpureum than on an alternative host plant Vicia faba, and the negative effect of L. purpureum on aphid growth was consistently exacerbated by the bacterial secondary symbionts Regiella insecticola and Hamiltonella defensa, which attained high densities in L. purpureum-reared aphids. The amino acid content of the phloem sap of L. purpureum was very low; and A. fabae on chemically defined diets of low amino acid content also grew slowly and had elevated secondary symbiont densities. It is suggested that the phloem nutrient profile of L. purpureum promotes deleterious traits in the secondary symbionts and disturbs insect controls over bacterial abundance.  相似文献   
143.
辣椒蚜虫种类的调查   总被引:3,自引:0,他引:3  
蚜虫属同翅目蚜虫总科,是重要的作物害虫。调查海南辣椒植株的蚜虫种类,采集蚜虫标本。将上述活体蚜虫分别接种在室内盆栽辣椒植株上饲养、繁殖,并观察记录各龄期蚜虫的形态特征。经室内观察测定,鉴定出三种蚜虫:棉蚜[Aphis gossypii(Glover)]、桃蚜[Myzus persicae(Sulzer)]和萝卜蚜[Lipaphis erysimi(Kaltenbach)]。  相似文献   
144.
The adaptive value of autumn colours is still a puzzle for evolutionary biology. It has been suggested that autumn colours are a warning signal to insects that use the trees as a host. I show that aphids (Dysaphis plantaginea) avoid apple trees (Malus pumila) with red leaves in autumn and that their fitness in spring is lower on these trees, which suggests that red leaves are an honest signal of the quality of the tree as a host. Autumn colours are common in wild populations but not among cultivated apple varieties, which are no longer under natural selection against insects. I show that autumn colours remain only in the varieties that are very susceptible to the effects of a common insect-borne disease, fire blight, and therefore are more in need of avoiding insects. Moreover, varieties with red leaves have smaller fruits, which shows that they have been under less effective artificial selection. This suggests a possible trade off between fruit size, leaf colour and resistance to parasites. These results are consistent with the hypothesis that autumn colours are a warning signal to insects, but not with other hypotheses.  相似文献   
145.
Aims: Producing granular cultures of obligate aphid pathogen Pandora nouryi for improved sporulation and storage. Methods and Results: Small millet–gel granules were made of the mixtures of 80–95% millet powder with 5–20% polymer gel (polyacrylamide, polyacrylate or acrylate‐acrylamide copolymer) and inoculated with mycelia at 30 mg biomass g?1 dry granules plus 87·5% water, followed by static incubation at 20°C for 4–12 days. The fungus grew well on 12 preparations but best on that including 10% copolymer. An 8‐day culture of this preparation discharged maximally 58·5 × 104 conidia mg?1 granule at 100% RH and was capable of ejecting conidia at the nonsaturated regimes of 86–97% RH. During storage at 6°C, granular cultures with >85% water content had twofold longevity (120 days) and half‐decline period (34–36 days) of those stored at room temperature. The steadily high water content preserved the cultures better than that decreasing at 6°C. However, conidia from 70‐day‐stored granules were less infective to Myzus persicae nymphs than those from fresh ones based on their LC50s. Conclusions: The millet–gel granules had higher sporulation capacity than reported Pandora cultures and a capability of spore discharge at nonsaturated humidity. Significance and Impact of the Study: The granular cultures are more useful for aphid control.  相似文献   
146.
This research aims to examine the effect of phenolics on pea aphid (Acyrthosiphon pisum) (Homoptera: Aphididae) development and feeding behaviour, on leaves of selected low-saponin lines of Radius alfalfa (Medicago sativa). There was a slight, negative correlation (Spearman rank correlation r s = −0.80) between concentrations of saponins and phenols. Lines with higher concentrations of saponins had less phenolics. Levels of phenolics in low-saponin lines of alfalfa cv. Radius were related to their acceptance by the pea aphid. Our data revealed an inverse relationship between level of phenolics and the aphid abundance and its biology on studied alfalfa lines. Larval development of the pea aphid was longer, reproduction period was shorter, and the fecundity was lower on low-saponin lines with higher level of phenolics. There were observed some tendencies in the pea aphid feeding behaviour on these lines: prolonging the probing of the peripheral tissues (epidermis and mesophyll) and shortening the period of phloem sap ingestion. The better hosts for the pea aphid were low-saponin lines with low levels of phenolic compounds.  相似文献   
147.
Abstract Identification of aphid species is always difficult due to the shortage of easily distinguishable morphological characters. Aphid genus Toxoptera consists of species with similar morphology and similar to Aphis in most morphological characters except the stridulatory apparatus. DNA barcodes with 1 145 bp sequences of partial mitochondrial cytochrome‐coxidase I (COI) genes were used for accurate identification of Toxoptera. Results indicated mean intraspecific sequence divergences were 1.33%, whereas mean interspecific divergences were greater at 8.29% (0.13% and 7.79% if T. aurantii 3 and T. aurantii 4 are cryptic species). Sixteen samples were distinguished to four species correctly by COI barcodes, which implied that DNA barcoding was successful in discrimination of aphid species with similar morphology. Phylogenetic relationships among species of this genus were tested based on this portion of COI sequences. Four species of Toxoptera assembled a clade with low support in maximum‐parsimony (MP) analysis, maximum‐likelihood (ML) analysis and Bayesian phylogenetic trees, the genus Toxoptera was not monophyletic, and there were two sister groups, such as T. citricidus and T. victoriae, and two clades of T. aurantii which probably presented cryptic species in the genus.  相似文献   
148.
The poplar petiole gall aphid, Pemphigus populitransversus Riley, has been one of the major pests on cruciferous vegetable in the Rio Grande Valley (LRGV) of Texas since the late 1940s. It normally migrates from poplar trees to cruciferous vegetables in the fall, and migrates back to the trees in early spring of the coming year. Some root‐feeding aphids were found on cruciferous vegetables in late spring and early summer in 1998 and the following years. Those aphids have been identified as Pemphigus obesinymphae Moran. This discovery completely changed the current knowledge about the root‐feeding aphids on cruciferous vegetables in the LRGV. Due to their small size, morphological and feeding similarities between P. populitransversus and P. obesinymphae, their identification and distinction are difficult. In this study, random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) were used to distinguish these two species over a period of time when the two species occurred together, or separately, in cabbage fields. The two species occurred on cabbage at different times of the year, and overlapped from October to June. From May to October, both species migrated to their primary hosts. The apterous aphids found on cabbage in winter contained mainly P. obesinymphae, whereas in early spring more apterous P. populitransversus were recovered. The root‐feeding aphids would feed on cabbage plants as long as this host was available even during the hot, dry summer in the LRGV, although their populations were generally low. Both RAPD and AFLP techniques were efficient in discriminating the two species that showed obviously genetic variability. These molecular techniques confirmed the existence of the two aphid species in apterous samples collected from the soil in cabbage fields in the LRGV, and the results performed by RAPD were confirmed by AFLP. Furthermore, the results suggest that RAPD technique was a better choice despite its reproducibility problem, as it was less time‐consuming and required less technology, labor and expense than AFLP.  相似文献   
149.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   
150.
Visual cues leading to host selection and landing are of major importance for aphids and evidence suggests that flight activity is very dependent on ultraviolet (UV)‐A radiation in the environment. At the same time research on insect plant hosts suggest that the UV‐B component can deter some pests via changes in secondary metabolite chemistry. Here, we examine the potential of UV (UV‐A/UV‐B) radiation to control insect pests in the glasshouse environment. We first examined artificial exposure to UV‐B and the potential to trigger morphological and biochemical modifications in pepper (Capsicum annuum L., Solanaceae) with implications for the fitness of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). UV‐B caused accumulation of leaf secondary metabolites and soluble carbohydrates, and stimulated photosynthetic pigments. However, UV‐B did not impact on foliar protein content and aphid performance was unaffected. Next, we studied how altering the UV‐A/UV‐B ratio environment affected aphid orientation and spatial distribution over time, either directly or by exposing plants to supplemental UV before insect introduction. Aphids directly settled and dispersed on their host pepper plants more readily in the presence of supplemental UV‐A and UV‐B. In the control treatment with ambient glasshouse UV‐A and UV‐B, insects remained more aggregated. Furthermore, insects were less attracted to peppers pre‐exposed to supplemental UV‐A and UV‐B radiation. Our results suggest that suppression of UV‐A and UV‐B inside the protected environment reduces aphid colonization and dispersal. Furthermore, application of moderate exposure of young pepper plants to supplemental UV‐B radiation could aid in protection from the colonization by phytophagous insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号