首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19112篇
  免费   1438篇
  国内免费   1443篇
  21993篇
  2024年   64篇
  2023年   395篇
  2022年   643篇
  2021年   802篇
  2020年   787篇
  2019年   921篇
  2018年   805篇
  2017年   663篇
  2016年   713篇
  2015年   761篇
  2014年   1047篇
  2013年   1451篇
  2012年   737篇
  2011年   850篇
  2010年   600篇
  2009年   831篇
  2008年   810篇
  2007年   922篇
  2006年   828篇
  2005年   730篇
  2004年   676篇
  2003年   640篇
  2002年   556篇
  2001年   475篇
  2000年   409篇
  1999年   394篇
  1998年   382篇
  1997年   320篇
  1996年   309篇
  1995年   261篇
  1994年   251篇
  1993年   232篇
  1992年   210篇
  1991年   180篇
  1990年   169篇
  1989年   149篇
  1988年   128篇
  1987年   124篇
  1986年   123篇
  1985年   141篇
  1984年   105篇
  1983年   59篇
  1982年   81篇
  1981年   74篇
  1980年   41篇
  1979年   49篇
  1978年   29篇
  1977年   20篇
  1975年   15篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
Predicting species'' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.  相似文献   
992.
水稻抗白叶枯病基因Xa4位点跨叠BAC克隆群的构建   总被引:2,自引:0,他引:2  
水稻白叶枯病抗性基因Xa4已被定位于第11染色体长臂末端的分子标记VG181和L1044之间,并与抗性基因同源序列片段RS13共分离。利用这3个标记筛选IRBB56的BAC文库,共得到128个阳性BAC克隆,其中RS13获得18个阳性克隆,这18个克隆中有4个和6个我隆分别同时为G181和L1044的阳性克隆,选其中的12克隆进行分析,构建了一个从G181到L1044区间的BAC跨叠克隆,全长420kb,并且56M22、106P13和104B153个BAC克隆可覆盖整个跨叠克隆群。这一研究结果为进一步分离Xa4基因打下基础。  相似文献   
993.
994.
There is growing interest in resolving the curious disconnect between the fields of kin selection and sexual selection. Rankin's (2011, J. Evol. Biol. 24 , 71–81) theoretical study of the impact of kin selection on the evolution of sexual conflict in viscous populations has been particularly valuable in stimulating empirical research in this area. An important goal of that study was to understand the impact of sex‐specific rates of dispersal upon the coevolution of male‐harm and female‐resistance behaviours. But the fitness functions derived in Rankin's study do not flow from his model's assumptions and, in particular, are not consistent with sex‐biased dispersal. Here, we develop new fitness functions that do logically flow from the model's assumptions, to determine the impact of sex‐specific patterns of dispersal on the evolution of sexual conflict. Although Rankin's study suggested that increasing male dispersal always promotes the evolution of male harm and that increasing female dispersal always inhibits the evolution of male harm, we find that the opposite can also be true, depending upon parameter values.  相似文献   
995.
The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2‐kb unit contains four genes. One allele of Rhg1, Rhg1‐b, is responsible for protecting most US soybean production from SCN. Whole‐genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2‐kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high‐density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non‐neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1.  相似文献   
996.
The seagrass Posidonia oceanica is a key engineering species structuring coastal marine systems throughout much of the Mediterranean basin. Its decline is of concern, leading to the search for short‐ and long‐term indicators of seagrass health. Using ArcGIS maps from a recent, high‐resolution (1–4 km) modelling study of 18 disturbance factors affecting coastal marine systems across the Mediterranean (Micheli et al. 2013, http://globalmarine.nceas.ucsb.edu/mediterranean/ ), we tested for correlations with genetic diversity metrics (allelic diversity, genotypic/clonal diversity and heterozygosity) in a meta‐analysis of 56 meadows. Contrary to initial predictions, weak but significantly positive correlations were found for commercial shipping, organic pollution (pesticides) and cumulative impact. This counterintuitive finding suggests greater resistance and resilience of individuals with higher genetic and genotypic diversity under disturbance (at least for a time) and/or increased sexual reproduction under an intermediate disturbance model. We interpret the absence of low and medium levels of genetic variation at impacted locations as probable local extinctions of individuals that already exceeded their resistance capacity. Alternatively, high diversity at high‐impact sites is likely a temporal artefact, reflecting the mismatch with pre‐environmental impact conditions, especially because flowering and sexual recruitment are seldom observed. While genetic diversity metrics are a valuable tool for restoration and mitigation, caution must be exercised in the interpretation of correlative patterns as found in this study, because the exceptional longevity of individuals creates a temporal mismatch that may falsely suggest good meadow health status, while gradual deterioration of allelic diversity might go unnoticed.  相似文献   
997.

Background

Disease resistance (R) genes from different Rosaceae species have been identified by map-based cloning for resistance breeding. However, there are few reports describing the pattern of R-gene evolution in Rosaceae species because several Rosaceae genome sequences have only recently become available.

Results

Since most disease resistance genes encode NBS-LRR proteins, we performed a systematic genome-wide survey of NBS-LRR genes between five Rosaceae species, namely Fragaria vesca (strawberry), Malus × domestica (apple), Pyrus bretschneideri (pear), Prunus persica (peach) and Prunus mume (mei) which contained 144, 748, 469, 354 and 352 NBS-LRR genes, respectively. A high proportion of multi-genes and similar Ks peaks (Ks = 0.1- 0.2) of gene families in the four woody genomes were detected. A total of 385 species-specific duplicate clades were observed in the phylogenetic tree constructed using all 2067 NBS-LRR genes. High percentages of NBS-LRR genes derived from species-specific duplication were found among the five genomes (61.81% in strawberry, 66.04% in apple, 48.61% in pear, 37.01% in peach and 40.05% in mei). Furthermore, the Ks and Ka/Ks values of TIR-NBS-LRR genes (TNLs) were significantly greater than those of non-TIR-NBS-LRR genes (non-TNLs), and most of the NBS-LRRs had Ka/Ks ratios less than 1, suggesting that they were evolving under a subfunctionalization model driven by purifying selection.

Conclusions

Our results indicate that recent duplications played an important role in the evolution of NBS-LRR genes in the four woody perennial Rosaceae species. Based on the phylogenetic tree produced, it could be inferred that species-specific duplication has mainly contributed to the expansion of NBS-LRR genes in the five Rosaceae species. In addition, the Ks and Ka/Ks ratios suggest that the rapidly evolved TNLs have different evolutionary patterns to adapt to different pathogens compared with non-TNL resistant genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1291-0) contains supplementary material, which is available to authorized users.  相似文献   
998.
999.
The thromboxane synthase converts prostaglandin H2 to thromboxane A2 and malondialdehyde (MDA) in approximately equimolar amounts. A reactive dicarbonyl, MDA forms covalent adducts of amino groups, including the ε-amine of lysine, but the importance of this reaction in platelets was unknown. Utilizing a novel LC/MS/MS method for analysis of one of the MDA adducts, the dilysyl-MDA cross-link, we demonstrated that dilysyl-MDA cross-links in human platelets are formed following platelet activation via the cyclooxygenase (COX)-1/thromboxane synthase pathway. Salicylamine and analogs of salicylamine were shown to react with MDA preferentially, thereby preventing formation of lysine adducts. Dilysyl-MDA cross-links were measured in two diseases known to be associated with increased platelet activation. Levels of platelet dilysyl-MDA cross-links were increased by 2-fold in metabolic syndrome relative to healthy subjects, and by 1.9-fold in sickle cell disease (SCD). In patients with SCD, the reduction of platelet dilysyl-MDA cross-links following administration of nonsteroidal anti-inflammatory drug provided evidence that MDA modifications of platelet proteins in this disease are derived from the COX pathway. In summary, MDA adducts of platelet proteins that cross-link lysines are formed on platelet activation and are increased in diseases associated with platelet activation. These protein modifications can be prevented by salicylamine-related scavengers.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号