首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6035篇
  免费   347篇
  国内免费   523篇
  6905篇
  2023年   88篇
  2022年   137篇
  2021年   165篇
  2020年   159篇
  2019年   210篇
  2018年   200篇
  2017年   159篇
  2016年   211篇
  2015年   188篇
  2014年   318篇
  2013年   565篇
  2012年   194篇
  2011年   256篇
  2010年   238篇
  2009年   262篇
  2008年   254篇
  2007年   280篇
  2006年   249篇
  2005年   219篇
  2004年   210篇
  2003年   166篇
  2002年   176篇
  2001年   125篇
  2000年   132篇
  1999年   152篇
  1998年   131篇
  1997年   131篇
  1996年   123篇
  1995年   149篇
  1994年   136篇
  1993年   139篇
  1992年   124篇
  1991年   99篇
  1990年   68篇
  1989年   57篇
  1988年   69篇
  1987年   59篇
  1986年   43篇
  1985年   48篇
  1984年   51篇
  1983年   26篇
  1982年   19篇
  1981年   23篇
  1980年   16篇
  1979年   9篇
  1978年   17篇
  1976年   13篇
  1975年   7篇
  1974年   11篇
  1972年   7篇
排序方式: 共有6905条查询结果,搜索用时 15 毫秒
941.
The patents of first-generation biopharmaceutical proteins are expiring, creating opportunities for biosimilar products. Unlike conventional generic pharmaceuticals, the development of biosimilar products is far more complex and requires more than a simple demonstration of pharmacological bioequivalence to establish efficacy and safety. The main concern with biosimilar products, as for any therapeutic protein, is immunogenicity and with it the potential for serious clinical sequelae. In the absence of adequate predictors of immunogenicity outside the clinical trial setting, biosimilar products should be evaluated in the same way that any novel pharmaceutical is evaluated. Herein, the factors involved in breaking host tolerance following administration of a therapeutic protein are discussed. The impact of product handling on immunogenicity is considered in the context of some hard-fought lessons that have helped to shape the current era of biopharmaceutical manufacturing, packaging, distribution, storage, and quality assurance.  相似文献   
942.
Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.  相似文献   
943.
Septic shock is a leading cause of death, and it results from an inflammatory cascade triggered by the presence of microbial products in the blood. Certain LPS from Gram-negative bacteria are very potent inducers and are responsible for a high percentage of septic shock cases. Despite decades of research, mAbs specific for lipid A (the endotoxic principle of LPS) have not been successfully developed into a clinical treatment for sepsis. To understand the molecular basis for the observed inability to translate in vitro specificity for lipid A into clinical potential, the structures of antigen-binding fragments of mAbs S1–15 and A6 have been determined both in complex with lipid A carbohydrate backbone and in the unliganded form. The two antibodies have separate germ line origins that generate two markedly different combining-site pockets that are complementary both in shape and charge to the antigen. mAb A6 binds lipid A through both variable light and heavy chain residues, whereas S1–15 utilizes exclusively the variable heavy chain. Both antibodies bind lipid A such that the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains the lack of LPS recognition. Longstanding reports of polyspecificity of anti-lipid A antibodies toward single-stranded DNA combined with observed homology of S1–15 and A6 and the reports of several single-stranded DNA-specific mAbs prompted the determination of the structure of S1–15 in complex with single-stranded DNA fragments, which may provide clues about the genesis of autoimmune diseases such as systemic lupus erythematosus, thyroiditis, and rheumatic autoimmune diseases.  相似文献   
944.
To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity.  相似文献   
945.
The monoclonal antibody B13-DE1 binds fluorescein, several fluorescein derivatives, and three peptide mimotopes. Our results revealed that this antibody also catalyzed the redox reaction of resazurin to resorufin, which are both structurally related to fluorescein. By using sodium sulfite as a reducing agent, the antibody B13-DE1 lowered the activation energy of this reaction. The Michaelis-Menten constant and turnover number of the catalyzed reaction were determined as 4.2 μmol/l and 0.0056 s(-1) , respectively. Because the results showed that fluorescein inhibited the catalytic activity of the antibody, we assume that the antigen-binding site and the catalytic active site are identical.  相似文献   
946.
As medicine is currently practiced, doctors send specimens to a central laboratory for testing and thus must wait hours or days to receive the results. Many patients would be better served by rapid, bedside tests. To this end our laboratory and others have developed a versatile, reagentless biosensor platform that supports the quantitative, reagentless, electrochemical detection of nucleic acids (DNA, RNA), proteins (including antibodies) and small molecules analytes directly in unprocessed clinical and environmental samples. In this video, we demonstrate the preparation and use of several biosensors in this "E-DNA" class. In particular, we fabricate and demonstrate sensors for the detection of a target DNA sequence in a polymerase chain reaction mixture, an HIV-specific antibody and the drug cocaine. The preparation procedure requires only three hours of hands-on effort followed by an overnight incubation, and their use requires only minutes.  相似文献   
947.
With over 25 monoclonal antibodies (mAbs) currently approved and many more in development, there is considerable interest in gaining improved productivity by increasing cell density and enhancing cell survival of production cell lines. In addition, high costs and growing safety concerns with use of animal products have made the availability of serum-free cell lines more appealing. We elected to transfect the myeloma cell line Sp2/0-Ag14 with Bcl2-EEE, the constitutively active phosphomimetic mutant of Bcl2, for extended cell survival. After adaptation of the initial transfectants to serum-independent growth, a clone with superior growth properties, referred to as SpESF, was isolated and further subjected to iterative rounds of stressful growth over a period of 4 months. The effort resulted in the selection of a promising clone, designated SpESFX-10, which was shown to exhibit robust growth and resist apoptosis induced by sodium butyrate or glutamine deprivation. The advantage of SpESFX-10 as a host for generating mAb-production cell lines was demonstrated by its increased transfection efficiency, culture longevity, and mAb productivity, as well as by the feasibility of accomplishing the entire cell line development process, including transfection, subcloning, and cryopreservation, in the complete absence of serum.  相似文献   
948.
Transgenic Lemna minor has been used successfully to produce several biotherapeutic proteins. For plant-produced mAbs specifically, the cost of protein A capture step is critical as the economic benefits of plant production systems could be erased if the downstream processing ends up being expensive. To avoid potential modification of mAb or fouling of expensive protein A resins, a rapid and efficient removal of phenolics from plant extracts is desirable. We identified major phenolics in Lemna extracts and evaluated their removal by adsorption to PVPP, XAD-4, IRA-402, and Q-Sepharose. Forms of apigenin, ferulic acid, and vitexin comprised ~ 75% of the total phenolics. Screening of the resins with pure ferulic acid and vitexin indicated that PVPP would not be efficient for phenolics removal. Analysis of the breakthrough fractions of phenolics adsorption to XAD-4, IRA-402, and Q-Sepharose showed differences in adsorption with pH and in the type of phenolics adsorbed. Superior dynamic binding capacities (DBC) were observed at pH 4.5 than at 7.5. To evaluate the cost impact of a phenolics removal step before protein A chromatography, a mAb purification process was simulated using SuperPro Designer 7.0. The economic analysis indicated that addition of a phenolics adsorption step would increase mAb production cost only 20% by using IRA-402 compared to 35% for XAD-4 resin. The cost of the adsorption step is offset by increasing the lifespan of protein A resin and a reduction of overall mAb production cost could be achieved by using a phenolics removal step.  相似文献   
949.
In order to develop an anti-FMDV A Type monoclonal antibo by (mAb),BABL/c mice were immunized with FMDV A type.Monoclonal antibodies (mAbs) 7B11 and 8H4 against Foot-and-mouth disease virus (FMDV) serotype A were produced by fusing SP2/O myeloma cells with splenocyte from the mouse immunized with A/AV88.The microneutralization titer of the mAbs 7B11 and 8H4 were 1024 and 512,respectively.Both mAbs contain kappa light chains,the mAbs were IgG1.In order to define the mAbs binding epitopes,the reactivity of these mAbs against A Type FMDV,were examined using indirect ELISA,the result showed that both mAbs reacted with A Type FMDV.These mAbs may be used for further vaccine studies,diagnostic methods,prophylaxis,etiological and immunological research on FMDV.Characterization of these ncindicated that prepared anti-FMDV A mAbs had no cross-reactivity with Swine Vesicular Disease (SVD) or FMDV O,Asial and C Type antigens.Their titers in abdomen liquor were 1:5×106 and 1:2×106,respectively.7B11 was found to be of subtype IgG1,8H4 was classified as IgG2b subtype.The mAbs prepared in this study,are specific for detection of FMDV serotype A,and is potentially useful for pen-side diagnosis.  相似文献   
950.
The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号