首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40777篇
  免费   2560篇
  国内免费   5328篇
  48665篇
  2024年   91篇
  2023年   689篇
  2022年   934篇
  2021年   1188篇
  2020年   1112篇
  2019年   1420篇
  2018年   1171篇
  2017年   1079篇
  2016年   1133篇
  2015年   1350篇
  2014年   1887篇
  2013年   2811篇
  2012年   1798篇
  2011年   1935篇
  2010年   1648篇
  2009年   2049篇
  2008年   2244篇
  2007年   2382篇
  2006年   2466篇
  2005年   2205篇
  2004年   2033篇
  2003年   1920篇
  2002年   1766篇
  2001年   1410篇
  2000年   1170篇
  1999年   1115篇
  1998年   978篇
  1997年   881篇
  1996年   792篇
  1995年   810篇
  1994年   726篇
  1993年   521篇
  1992年   484篇
  1991年   394篇
  1990年   340篇
  1989年   262篇
  1988年   258篇
  1987年   226篇
  1986年   164篇
  1985年   186篇
  1984年   191篇
  1983年   103篇
  1982年   116篇
  1981年   61篇
  1980年   52篇
  1979年   36篇
  1978年   23篇
  1977年   16篇
  1976年   18篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
191.
192.
Australian magpies (Gymnorhina tibicen) are group-living birds found across much of mainland Australia. Adults commonly remain in a breeding territory until death. Young of the year either remain on the natal (birth) site or are forced by their parents to disperse. Observational studies in south-eastern Australia suggest that most dispersing juveniles settle within 7 km of their natal territory. Therefore, despite potential for considerable gene flow (via flight), social organization predisposes magpies towards local population structuring. In this study, we measured genetic variation at both nuclear (allozyme) and mitochondrial loci and found evidence of substantial gene flow over very large distances (up to 1599 km). Thus, some juvenile magpies may disperse much greater distances than was previously thought. For mtDNA, geographic and genetic distance were strongly correlated, consistent with a pattern of isolation by distance. Therefore, although female gene flow is substantial it is apparently geographically restricted over large distances, in approximately a stepping-stone fashion. We conclude that a strong relationship between gene flow and geographic distance can develop even over large distances if populations have experienced no major historical disturbances to gene flow.  相似文献   
193.
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.  相似文献   
194.
195.
Strong barriers to genetic exchange can exist at divergently selected loci, whereas alleles at neutral loci flow more readily between populations, thus impeding divergence and speciation in the face of gene flow. However, ‘divergence hitchhiking’ theory posits that divergent selection can generate large regions of differentiation around selected loci. ‘Genome hitchhiking’ theory suggests that selection can also cause reductions in average genome‐wide rates of gene flow, resulting in widespread genomic divergence (rather than divergence only around specific selected loci). Spatial heterogeneity is ubiquitous in nature, yet previous models of genetic barriers to gene flow have explored limited combinations of spatial and selective scenarios. Using simulations of secondary contact of populations, we explore barriers to gene flow in various selective and spatial contexts in continuous, two‐dimensional, spatially explicit environments. In general, the effects of hitchhiking are strongest in environments with regular spatial patterning of starkly divergent habitat types. When divergent selection is very strong, the absence of intermediate habitat types increases the effects of hitchhiking. However, when selection is moderate or weak, regular (vs. random) spatial arrangement of habitat types becomes more important than the presence of intermediate habitats per se. We also document counterintuitive processes arising from the stochastic interplay between selection, gene flow and drift. Our results indicate that generalization of results from two‐deme models requires caution and increase understanding of the genomic and geographic basis of population divergence.  相似文献   
196.
The silkworm Bombyx mori L., representing an important economic insect and one of the best models for studying insect immunity, possesses an efficient and sophisticated innate immune system against invasive microorganisms. The innate immune system basically includes humoural immunity and cellular immunity. The humoural immunity, which functions via molecules including humoural factors, lysozymes, phenoloxidase, hemolin, lectins and, in particular, antimicrobial peptides, plays a central role in eliminating the invading pathogens. The cellular immunity is primarily carried out and mediated by plasmatocytes and granular cells of haemocytes in the haemolymph, usually followed by melanization. Additionally, apoptosis, a primary viral defence for insects lacking adaptive immunity, comprises an important part of the silkworm immune system. Currently, there is still the lack of a comprehensive and systematic understanding of the molecular mechanisms of silkworm immunity. We review the latest research progress on silkworm immune mechanisms, including phenoloxidase‐dependent melanization and apoptosis, which is conducive to improving our understanding of the silkworm immune mechanism, clarifying the relationship of various immune mechanisms, and also providing a theoretical basis and reference for the future research of insect immunity.  相似文献   
197.
汉族马凡综合征(MFS)患者FBN1基因两种新发突变分析   总被引:1,自引:0,他引:1  
为调查马凡综合征(Marfan syndrome, MFS)患者的原纤维蛋白-1(Fibrillin-1, FBN1)基因突变情况, 应用聚合酶链反应(PCR)和变性高效液相色谱法(Denaturing high-performance liquid chromatography, DHPLC)对MFS患者的FBN1基因进行突变筛查, 对DHPLC初筛异常的DNA片段进行测序分析。结果在两个MFS家系中发现FBN1基因两种新的突变: 一种为复合突变包含第55号外显子的缺失突变c.6862_6871delGGCTGTGTAG (p.Gly2288MetfsX109)、同义突变c.6861A>G和内含子的突变c.[6871+1_6871+11delGTAAGAGGATC; 6871+34dupCATCAGAAGTGACAGTGGACA]; 另一种为第20号外显子的错义突变c.2462G>A(p.Cys821Tyr)。研究表明, FBN1基因的缺失突变c.[6862_6871delGGCTGTGTAG; 6871+1_6871+11delGTAAGAGGATC] (p.Gly2288MetfsX109)和错义突变c.2462G>A(p.Cys821Tyr)可能分别是这两个家系患者的致病原因。  相似文献   
198.
During inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made regarding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap, the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6 activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and intravascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which may contribute to improved outcomes of endotoxemia.  相似文献   
199.
200.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号