首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4283篇
  免费   338篇
  国内免费   264篇
  2024年   17篇
  2023年   129篇
  2022年   189篇
  2021年   220篇
  2020年   225篇
  2019年   283篇
  2018年   248篇
  2017年   186篇
  2016年   231篇
  2015年   243篇
  2014年   318篇
  2013年   469篇
  2012年   162篇
  2011年   188篇
  2010年   131篇
  2009年   157篇
  2008年   167篇
  2007年   162篇
  2006年   160篇
  2005年   125篇
  2004年   121篇
  2003年   103篇
  2002年   108篇
  2001年   70篇
  2000年   38篇
  1999年   54篇
  1998年   61篇
  1997年   41篇
  1996年   35篇
  1995年   33篇
  1994年   31篇
  1993年   26篇
  1992年   12篇
  1991年   20篇
  1990年   12篇
  1989年   14篇
  1988年   5篇
  1987年   10篇
  1986年   12篇
  1985年   12篇
  1984年   19篇
  1983年   9篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   1篇
排序方式: 共有4885条查询结果,搜索用时 31 毫秒
171.
ABSTRACT

As standard second-line regimen has not been established for patients who are refractory to or relapse with cisplatin-based chemotherapy, an effective class of novel chemotherapeutic agents is needed for cisplatin-resistant bladder cancer. Recent publications reported that MutT homolog 1 (MTH1) inhibitors suppress tumor growth and induce impressive therapeutic responses in a variety of human cancer cells. Few studies investigated the cytotoxic effects of MTH1 inhibitors in human bladder cancer. Accordingly, we investigated the antitumor effects and the possible molecular mechanisms of MTH1 inhibitors in cisplatin-sensitive (T24) and – resistant (T24R2) human bladder cancer cell lines. These results suggest that TH588 or TH287 may induce cancer cell suppression by off-target effects such as alterations in the expression of apoptosis- and cell cycle-related proteins rather than MTH1 inhibition in cisplatin-sensitive and – resistant bladder cancer cells.

Abbreviations: MTH: MutT homolog; ROS: reactive oxygen species; CCK-8: cell counting kit-8; DCFH-DA: dichlorofluorescein diacetate; PARP: poly (ADP-ribose) polymerase  相似文献   
172.
The concept of the halogen bond (or X‐bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ‐hole, serves as a Lewis acid to attract a variety of electron‐rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H‐bond) interaction. We present here a broad overview of X‐bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X‐bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X‐bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological‐based materials.  相似文献   
173.
The small chaperone protein Hsp27 confers resistance to apoptosis, and therefore is an attractive anticancer drug target. We report here a novel mechanism underlying the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitizing activity of the small molecule LY303511, an inactive analog of the phosphoinositide 3-kinase inhibitor inhibitor LY294002, in HeLa cells that are refractory to TRAIL-induced apoptosis. On the basis of the fact that LY303511 is derived from LY294002, itself derived from quercetin, and earlier findings indicating that quercetin and LY294002 affected Hsp27 expression, we investigated whether LY303511 sensitized cancer cells to TRAIL via a conserved inhibitory effect on Hsp27. We provide evidence that upon treatment with LY303511, Hsp27 is progressively sequestered in the nucleus, thus reducing its protective effect in the cytosol during the apoptotic process. LY303511-induced nuclear translocation of Hsp27 is linked to its sustained phosphorylation via activation of p38 kinase and MAPKAP kinase 2 and the inhibition of PP2A. Furthermore, Hsp27 phosphorylation leads to the subsequent dissociation of its large oligomers and a decrease in its chaperone activity, thereby further compromising the death inhibitory activity of Hsp27. Furthermore, genetic manipulation of Hsp27 expression significantly affected the TRAIL sensitizing activity of LY303511, which corroborated the Hsp27 targeting activity of LY303511. Taken together, these data indicate a novel mechanism of small molecule sensitization to TRAIL through targeting of Hsp27 functions, rather than its overall expression, leading to decreased cellular protection, which could have therapeutic implications for overcoming chemotherapy resistance in tumor cells.  相似文献   
174.
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells'' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.  相似文献   
175.
We have developed a robust, fully automated anti-parasitic drug-screening method that selects compounds specifically targeting parasite enzymes and not their host counterparts, thus allowing the early elimination of compounds with potential side effects. Our yeast system permits multiple parasite targets to be assayed in parallel owing to the strains’ expression of different fluorescent proteins. A strain expressing the human target is included in the multiplexed screen to exclude compounds that do not discriminate between host and parasite enzymes. This form of assay has the advantages of using known targets and not requiring the in vitro culture of parasites. We performed automated screens for inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and phosphoglycerate kinases, finding specific inhibitors of parasite targets. We found that our ‘hits’ have significant structural similarities to compounds with in vitro anti-parasitic activity, validating our screens and suggesting targets for hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent success rate for our hit compounds in killing or severely inhibiting the growth of Trypanosoma brucei, the causative agent of African sleeping sickness.  相似文献   
176.
Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large‐scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug–target relations to identify overrepresented protein–side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations.  相似文献   
177.
178.
随着抗病毒治疗时间的延长,如何处理人类免疫缺陷病毒(HIV)耐药患者是临床医师面对的一个挑战。本文报道对1例耐多药复杂重组HIV-1亚型感染病例成功进行抗病毒治疗的过程,总结了抗病毒依从性的重要性,即只有规律服药才能达到好的治疗效果。临床上可应用病毒基因耐药检测来指导抗病毒药物的选择,但应注意体外实验与体内实际情况可能存在的差异。此外,需进一步研究一些少见亚型毒株对药物的反应及对药物压力的逃避机制。  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号