首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  国内免费   1篇
  2019年   2篇
  2018年   3篇
  2014年   7篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
11.
12.
Apoptosis is a common mode of programmed cell death occurring during development as well as in many pathological conditions, in which the cell plays an active role in its own demise. Although the morphological and biochemical hallmarks of apoptosis are conserved across phyla and cell type, the mechanism(s) of apoptosis is unknown. However, data recently published demonstrate that expression of the anti-apoptotic gene bcl-2 decreases the net cellular generation of reactive oxygen species, and that reactive oxygen species serve as mediators of apoptosis in at least some cases.  相似文献   
13.
《Free radical research》2013,47(5):357-367
Abstract

In the present human health scenario, implication of oxidative stress in numerous pathologies including neurodegenerative, cardiovascular, liver, renal, pulmonary disorders, and cancer has gained attention. N-Acetylcysteine (NAC), a popular thiol antioxidant, has been clinically used to treat various pathophysiological disorders. However, NAC therapy is routine only in paracetamol intoxication and as a mucolytic agent. Over six decades, numerous studies involving NAC therapy have yielded inconsistent results, and this could be due to low bioavailability. In order to overcome the limitations of NAC, an amide derivative N-Acetylcysteine amide (NACA) has been synthesized to improve the lipophilicity, membrane permeability, and antioxidant property. Recent studies have demonstrated the blood–brain barrier permeability and therapeutic potentials of NACA in neurological disorders including Parkinson's disease, Alzheimer's disease, Multiple sclerosis, Tardive dyskinesia, and HIV-associated neurological disorders. In addition, NACA displays protective effect against pulmonary inflammation and antibiotic-induced apoptosis. Forthcoming research on the possible therapeutic properties of NACA and its generics in the management of pathologies associated with extracellular matrix degradation and oxidative stress-related inflammation is highly exiting. Superior bioavailability of NACA is likely to fulfill the promises of NAC as well as a molecule to improve the endurance and resident time of bioscaffolds and biomaterials. Till date, more than 800 reviews on NAC have been published. However, no comprehensive review is available on the therapeutic applications of NACA. Therefore, the current review would be the first to emphasize the therapeutic potentials of NACA and its derivatives.  相似文献   
14.
Progesterone inhibits the proliferation of normal breast epithelial cells in vivo, as well as breast cancer cells in vitro. But the biologic mechanism of this inhibition remains to be determined. We explored the possibility that an antiproliferative activity of progesterone in breast cancer cell lines is due to its ability to induce apoptosis. Since p53, bcl-2 and survivin genetically control the apoptotic process, we investigated whether or not these genes could be involved in the progesterone-induced apoptosis.We found a maximal 90% inhibition of cell proliferation with T47-D breast cancer cells after exposure to 10 M progesterone for 72 h. Control progesterone receptor negative MDA-231 cancer cells were unresponsive to 10 M progesterone. The earliest sign of apoptosis is translocation of phosphatidylserine from the inner to the outer leaflet of the plasma membrane and can be monitored by the calcium-dependent binding of annexin V in conjunction with flow cytometry. After 24 h of exposure to 10 M progesterone, cytofluorometric analysis of T47-D breast cancer cells indicated 43% were annexin V-positive and had undergone apoptosis and no cells showed signs of cellular necrosis (propidium iodide negative). After 72 h of exposure to 10 M progesterone, 48% of the cells had undergone apoptosis and 40% were annexin V positive/propidium iodide positive indicating signs of necrosis. Control untreated cancer cells did not undergo apoptosis. Evidence proving apoptosis was also demonstrated by fragmentation of nuclear DNA into multiples of oligonucleosomal fragments.After 24 h of exposure of T47-D cells to either 1 or 10 M progesterone, we observed a marked down-regulation of protooncogene bcl-2 protein and mRNA levels. mRNA levels of survivin and the metastatic variant CD44 v7-v10 were also downregulated. Progesterone increased p53 mRNA levels.These results demonstrate that progesterone at relative high physiological concentrations, but comparable to those seen in plasma during the third trimester of human pregnancy, exhibited a strong antiproliferative effect on breast cancer cells and induced apoptosis.  相似文献   
15.
In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 μM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 μM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/β-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.  相似文献   
16.
The molecular pathology of thymic epithelial tumors (TETs) is largely unknown. Using array comparative genomic hybridization (CGH), we evaluated 59 TETs and identified recurrent patterns of copy number (CN) aberrations in different histotypes. GISTIC algorithm revealed the presence of 126 significant peaks of CN aberration, which included 13 cancer-related genes. Among these peaks, CN gain of BCL2 and CN loss of CDKN2A/B were the only genes in the respective regions of CN aberration and were associated with poor outcome. TET cell lines were sensitive to siRNA knockdown of the anti-apoptotic molecules BCL2 and MCL1. Gx15-070, a pan-BCL2 inhibitor, induced autophagy-dependent necroptosis in TET cells via a mechanism involving mTOR pathways, and inhibited TET xenograft growth. ABT263, an inhibitor of BCL2/BCL-XL/BCL-W, reduced proliferation in TET cells when administered in combination with sorafenib, a tyrosine kinase inhibitor able to downregulate MCL1. Immunohistochemistry on 132 TETs demonstrated that CN loss of CDKN2A correlated with lack of expression of its related protein p16INK4 and identified tumors with poor prognosis. The molecular markers BCL2 and CDKN2A may be of potential value in diagnosis and prognosis of TETs. Our study provides the first preclinical evidence that deregulated anti-apoptotic BCL2 family proteins may represent suitable targets for TET treatment.  相似文献   
17.
18.
The cellular localization of A-kinase anchoring proteins (AKAPs), protein kinase A (PKAs) and phosphodiesterases (PDEs) is a key step to the spatiotemporal regulation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In this paper the cellular distribution of the mitochondrial AKAP 149–PKA–PDE4A complex and its implications in the cell death induced by YTX treatment, a known PDE modulator, was studied. K-562 cell line was incubated with YTX for 24 or 48 h. Under these conditions AKAP 149, PKA and type-4A PDE (PDE4A) levels were measured in the cytosol, in the plasma membrane and in the nucleus. Apoptotic hallmarks were also measured after the same conditions. In addition, YTX effect on cell viability was checked after AKAP 149 and PDE4A silencing. The results obtained show a decrease in AKAP 149–PKA–PDE4A levels in cytosol after YTX exposure. 24 h after the toxin addition, the complex expression increased in the plasma membrane and after 48 h in the nucleus domain. Furthermore Bcl-2 levels were decreased and the expression of caspase 3 together with caspase 8 activity were increased after 24 h of toxin incubation but not after 48 h. These results suggest apoptotic cell death at 24 h and a non-apoptotic cell death after 48 h. When AKAP 149 and PDE4A were silenced YTX did not induce cellular death. In summary, AKAP 149–PKA–PDE4A complex localization is related with YTX effect in K-562 cell line. When this complex is mainly located in the plasma membrane apoptosis is activated while when the complex is in the nuclear domain non-apoptotic cellular death or cellular differentiation is activated. Therefore AKAP 149–PKA–PDE4A distribution and integrity have a key role in cellular survival.  相似文献   
19.
Peroxynitrite is usually considered as a neurotoxic nitric oxide-derivative. However, an increasing body of evidence suggests that, at low concentrations, peroxynitrite affords transient cytoprotection, both in vitro and in vivo. Here, we addressed the signaling mechanism responsible for this effect, and found that rat cortical neurons in primary culture acutely exposed to peroxynitrite (0.1 mmol/L) rapidly elicited Akt-Ser(473) phosphorylation. Inhibition of phosphoinositide-3-kinase (PI3K)/Akt pathway with wortmannin or Akt small hairpin RNA (shRNA) abolished the ability of peroxynitrite to prevent etoposide-induced apoptotic death. Endogenous peroxynitrite formation by short-term incubation of neurons with glutamate stimulated Akt-Ser(473) phosphorylation, whereas Akt shRNA enhanced the vulnerability of neurons against glutamate. We further show that Akt-Ser(473) phosphorylation was consequence of the oxidizing, but not the nitrating properties of peroxynitrite. Peroxynitrite failed to nitrate or phosphorylate neurotrophin tyrosine kinase receptors (Trks), and it did not modify the ability of brain-derived neurotrophic factor (BDNF), to phosphorylate its cognate receptor, TrkB; however, peroxynitrite enhanced BDNF-mediated Akt-Ser(473) phosphorylation. Finally, we found that peroxynitrite-stimulated Akt-Ser(473) phosphorylation was associated with an increased proportion of oxidized phosphoinositide phosphatase, PTEN, in neurons. Moreover, peroxynitrite prevented the increase of apoptotic neuronal death caused by over-expression of PTEN. Thus, peroxynitrite exerts neuroprotection by inhibiting PTEN, hence activating the anti-apoptotic PI3K/Akt pathway in primary neurons.  相似文献   
20.
目的:探讨内镜黏膜下剥离术(ESD)治疗早期胃癌(EGC)的疗效及对患者预后和血清抗凋亡因子(Livin)、表皮生长因子(EGF)的影响。方法:选取我院于2014年1月~2015年12月期间收治的EGC患者98例为研究对象,根据随机数字表法将患者分为对照组(n=32)和研究组(n=66),对照组给予腹腔镜微创手术治疗,研究组患者给予ESD治疗,比较两组患者术后临床指标,比较两组患者手术前后血清Livin、EGF水平,观察两组患者术中及术后并发症发生情况,随访2年,记录两组患者随访期间的生存率及复发率。结果:研究组患者手术时间、住院时间均较对照组短,住院费用、术中出血量均较对照组少(P0.05),但两组患者整块切除率、治愈性切除率比较差异无统计学意义(P0.05)。两组患者术后血清Livin、EGF水平均较术前降低,且研究组低于对照组(P0.05)。研究组术中及术后并发症总发生率为3.03%(2/66),低于对照组的15.63%(5/32)(P0.05)。两组患者随访期间生存率、复发率比较无统计学差异(P0.05)。结论:ESD治疗EGC的预后效果与腹腔镜微创手术相当,但其能够更有效地降低血清Livin、EGF水平,加快患者的恢复,并发症少,临床应用价值较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号