全文获取类型
收费全文 | 42759篇 |
免费 | 17356篇 |
国内免费 | 22篇 |
专业分类
60137篇 |
出版年
2023年 | 6篇 |
2022年 | 21篇 |
2021年 | 445篇 |
2020年 | 2790篇 |
2019年 | 4316篇 |
2018年 | 4592篇 |
2017年 | 4574篇 |
2016年 | 4271篇 |
2015年 | 4139篇 |
2014年 | 4030篇 |
2013年 | 4389篇 |
2012年 | 3803篇 |
2011年 | 3959篇 |
2010年 | 3458篇 |
2009年 | 2278篇 |
2008年 | 2432篇 |
2007年 | 1857篇 |
2006年 | 1864篇 |
2005年 | 1556篇 |
2004年 | 1231篇 |
2003年 | 1350篇 |
2002年 | 1153篇 |
2001年 | 862篇 |
2000年 | 421篇 |
1999年 | 255篇 |
1998年 | 4篇 |
1997年 | 14篇 |
1996年 | 11篇 |
1995年 | 11篇 |
1994年 | 9篇 |
1993年 | 14篇 |
1992年 | 13篇 |
1991年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Constance J. Jeffery 《Protein science : a publication of the Protein Society》2019,28(7):1233-1238
In the cell, expression levels, allosteric modulators, post‐translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell. 相似文献
62.
Zhi Qian Zeyuan Zhong Shuo Ni Dejian Li Fangxue Zhang Ying Zhou Zhanrong Kang Jun Qian Baoqing Yu 《Journal of cellular and molecular medicine》2020,24(17):10112-10127
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis. 相似文献
63.
64.
Nora Wender Jan Hegermann Bettina Brunner Brigitte Nuscher Tim Bartels Armin Giese Klaus Beyer Stefan Eimer Konstanze F Winklhofer Christian Haass 《The EMBO journal》2010,29(20):3571-3589
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A. 相似文献
65.
Hexapeptides such as Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) and Ac-Arg-Tyr-Tyr-Arg-Trp-Arg-NH(2) have been isolated from a combinatorial peptide library as small peptide ligands for the opioid peptide-like 1 (ORL1) receptor. To investigate the detailed structural requirements of hexapeptides, 25 analogs of these hexapeptides, based on the novel analog Ac-Arg-Tyr-Tyr-Arg-Ile-Arg-NH(2) (1), were synthesized and tested for their ORL1 receptor affinity and agonist/antagonist activity on mouse vas deferens (MVD) tissues. Analog 1 and its Cit(6)-analog (10) were found to possess high affinity to the ORL1 receptor, comparable to that of nociceptin/orphanin FQ, and exhibited potent antagonist activity (pA(2) values of 7.77 for 1 and 7.51 for 10, which are higher than that of [NPhe(1)]nociceptin(1-13)-NH(2) (6.90) on MVD assay. It was also found that the amino acid residue in position 5 plays a key role in agonist/antagonist activity, i.e. an L-configuration aliphatic amino acid is required for potent antagonist activity, while a nonchiral or D-configuration residue produces potent agonist activity. These lines of evidence may provide insight into the mechanisms controlling agonist/antagonist switching in the ORL1 receptor, and may also serve to help developing more potent ORL1 agonists and antagonists. 相似文献
66.
Rishikesh Pandey Renjie Zhou Rosalie Bordett Ciera Hunter Kristine Glunde Ishan Barman Tulio Valdez Christine Finck 《Journal of biophotonics》2019,12(4)
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future. 相似文献
67.
Shizuo Narimatsu Rika Kato Toshiharu Horie Satoshi Ono Michio Tsutsui Yoshiyasu Yabusaki Shigeru Ohmori Mitsukazu Kitada Takao Ichioka Noriaki Shimada Ryuichi Kato Tsutomu Ishikawa 《Chirality》1999,11(1):1-9
The enantioselectivity of 4‐hydroxylation of bunitrolol (BTL), a β‐adrenoceptor blocking drug, was studied in microsomes from human liver, human hepatoma (Hep G2) cells expressing CYP2D6, and lymphoblastoid cells expressing CYP2D6. Kinetics in human liver microsomes showed that the Vmax value for (+)‐BTL was 2.1‐fold that of (−)‐BTL, and that the Km value for (+)‐BTL was lower than that for the (−)‐antipode, resulting in the intrinsic clearance (Vmax/Km) of (+)‐BTL being 2.1‐fold over its (−)‐antipode. CYP2D6 (CYP2D6‐met) expressed in Hep G2 cells had a methionine residue at position 373 of the amino acid sequence and a rat‐type N‐terminal peptide (MELLNGTGLWSM) instead of the human‐type (MGLEALVPLAVIV), and showed enantioselectivity of [(+)‐BTL < (−)‐BTL] for the rate of BTL 4‐hydroxylation. In contrast, enantioselectivity [(+)‐BTL > (−)‐BTL] for Hep G2‐CYP2D6 (CYP2D6‐val) with a human‐type N‐terminal peptide that had a valine residue at 374, which corresponds to the methionine of the CYP2D6‐met variant, was the same as that for human liver microsomes. We further confirmed that CYP2D6‐met and CYP2D6‐val expressed in human lymphoblastoid cells, both of which have methionine and valine, respectively, at position 374 and a human‐type N‐terminal peptide, exhibited the same enantioselectivities as those obtained from CYP2D6‐met and CYP2D6‐val expressed in the Hep G2 cell system. These results indicate that the amino acid at 374 of CYP2D6 is one of the key factors influencing the enantioselectivity of BTL 4‐hydroxylation. Chirality 11:1–9, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
68.
Chen Lu Zhongti Sun Lianghao Yu Xueyu Lian Yuyang Yi Jie Li Zhongfan Liu Shixue Dou Jingyu Sun 《Liver Transplantation》2020,10(28)
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications. 相似文献
69.
Robert L. Clark Maureen Youreneff Anthony M. DeLise 《Birth defects research. Part B, Developmental and reproductive toxicology》2016,107(6):243-257
The combination of artemether plus lumefantrine is a type of artemisinin‐based combination therapy (ACT) recommended by the World Health Organization for uncomplicated falciparum malaria except in the first trimester of pregnancy. The first trimester restriction was based on the marked embryotoxicity in animals (including embryo death and cardiac and skeletal malformations) of artemisinins such as artesunate, dihydroartemisinin, and artemether. Before recommending ACTs for use in the first trimester, the World Health Organization has requested that all information relevant to the assessment of risk of ACTs to the embryo be made available to the public. This report describes the results of embryo‐fetal development studies of artemether alone, lumefantrine alone, and the combination in rats and rabbits as well as toxicokinetic studies of lumefantrine in pregnant rabbits. The developmental no‐effect levels for lumefantrine were 300 mg/kg/day in rats (based on a 25% decrease in litter size at 1000 mg/kg/day) and 1000 mg/kg/day in rabbits. The calculated safety margins based on human equivalent dose and plasma Cmax and AUC values were in the range of 2.5‐ to 17‐fold. The developmental no‐effect levels for artemether were 3 mg/kg/day in rats and 25 mg/kg/day in rabbits. Lumefantrine caused no teratogenicity and was not a potent embryotoxin in rats and rabbits. Expected artemisinin‐like findings were seen with artemether alone and with artemether/lumefantrine combined except that no malformations were observed. There were no findings in pregnant rats and rabbits that would cause increased concern for the use of artemether–lumefantrine in the first trimester compared to other ACTs. 相似文献
70.
PD98059 and U0126 are organic compound inhibitors frequently used to block the activity of the MEK-1/2 protein kinase. In the present work, promoter activation analyses of xanthine oxidoreductase (XOR) in epithelial cells uncovered the unexpected opposite effect of these inhibitors on activation of XOR. Activation of an XOR-luciferase fusion gene was studied in stably transfected epithelial cells. The XOR reporter gene was activated by the epidermal growth factors (EGF), prolactin, and dexamethasone and by the acute phase cytokines (APC) IL-1, IL-6, and TNFalpha as previously reported for its native gene, and insulin further stimulated activation induced with acute phase cytokines or growth factors. Activation of the proximal promoter was blocked by inhibitors of the glucocorticoid receptor (GR), p38 MAP kinase, and U0126. Unexpectedly, PD98059 activated the promoter and significantly enhanced expression induced by insulin, APC, or growth factors. Analysis of the XOR upstream DNA and proximal promoter revealed primary roles for the GR and STAT3 in mediating the effects of PD98059 on XOR activation and protein complex formation with the promoter. STAT3 phosphotyrosine-705 was rapidly induced by PD98059, dexamethasone, and insulin. XOR activation by PD98059, dexamethasone, or insulin was superinduced by a constitutively active derivative of STAT3, while a dominant negative derivative of STAT3 blocked the enhancing effect of PD98059 on XOR activation. These data demonstrate a previously unrecognized effect of PD98059 on STAT3 and the GR that could have unanticipated consequences when used to infer the involvement of the MEK-1/2 protein kinase. 相似文献