首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   201篇
  国内免费   187篇
  1283篇
  2024年   12篇
  2023年   48篇
  2022年   26篇
  2021年   61篇
  2020年   90篇
  2019年   85篇
  2018年   84篇
  2017年   75篇
  2016年   56篇
  2015年   75篇
  2014年   70篇
  2013年   57篇
  2012年   46篇
  2011年   44篇
  2010年   36篇
  2009年   55篇
  2008年   44篇
  2007年   53篇
  2006年   49篇
  2005年   36篇
  2004年   18篇
  2003年   20篇
  2002年   18篇
  2001年   12篇
  2000年   19篇
  1999年   12篇
  1998年   15篇
  1997年   14篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   9篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1958年   1篇
排序方式: 共有1283条查询结果,搜索用时 15 毫秒
21.
The noise filter hypothesis predicts that species using higher sound frequencies should be more tolerant of noise pollution, because anthropogenic noise is more intense at low frequencies. Recent work analysed continental‐scale data on anthropogenic noise across the USA and found that passerine species inhabiting more noise‐polluted areas do not have higher peak song frequency but have more complex songs. However, this metric of song complexity is of ambiguous interpretation, because it can indicate either diverse syllables or a larger frequency bandwidth. In the latter case, the finding would support the noise filter hypothesis, because larger frequency bandwidths mean that more sound energy spreads to frequencies that are less masked by anthropogenic noise. We reanalysed how passerine song predicts exposure to noise using a more thorough dataset of acoustic song measurements, and showed that it is large frequency bandwidths, rather than diverse syllables, that predict the exposure of species to noise pollution. Given that larger bandwidths often encompass higher maximum frequencies, which are less masked by anthropogenic noise, our result suggests that tolerance to noise pollution might depend mostly on having the high‐frequency parts of song little masked by noise, thus preventing acoustic communication from going entirely unnoticed at long distances.  相似文献   
22.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   
23.
Many studies have demonstrated the importance of early‐successional forest habitat for breeding bird abundance, composition, and diversity. However, very few studies directly link measures of bird diversity, composition and abundance to measures of forest composition, and structure and their dynamic change over early succession. This study examines the relationships between breeding bird community composition and forest structure in regenerating broadleaf forests of southern New England, USA, separating the influences of ecological succession from retained stand structure. We conducted bird point counts and vegetation surveys across a chronosequence of forest stands that originated between 2 and 24 years previously in shelterwood timber harvests, a silvicultural method of regenerating oak‐mixed broadleaf forests. We distinguish between vegetation variables that relate to condition of forest regeneration and those that reflect legacy stand structure. Using principal components analyses, we confirmed the distinction between regeneration and legacy vegetation variables. We ran regression analysis to test for relationships between bird community variables, including nesting and foraging functional guild abundances, and vegetation variables. We confirmed these relationships with hierarchical partitioning. Our results demonstrate that regenerating and legacy vegetation correlate with bird community variables across stand phases and that the strength with which they drive bird community composition changes with forest succession. While measures of regeneration condition explain bird abundance and diversity variables during late initiation, legacy stand structure explains them during stem exclusion. Canopy cover, ground‐story diversity, and canopy structure diversity are the most powerful and consistent explanatory variables. Our results suggest that leaving varied legacy stand structure to promote habitat heterogeneity in shelterwood harvests contributes to greater bird community diversity. Interestingly, this is particularly important during the structurally depauperate phase of stem exclusion of young regenerating forests.  相似文献   
24.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   
25.
Seminatural habitats are declining throughout the world; thus, the role of small anthropogenic habitats in the preservation of plants is becoming increasingly appreciated. Here, we surveyed the orchid flora of roadside verges in five Central European countries (Austria, Hungary, Romania, Slovakia, and Slovenia) and tested how the surrounding landscape matrix affects the overall number of species and individuals, and also different functional groups of orchids. We found more than 2,000 individuals of 27 orchid species during our surveys. According to our results, the increasing coverage of agricultural and urban areas negatively affects both the number of orchid species and individuals on roadsides. Our study further suggests that differences in the surrounding habitats affect which species are found on roadsides, since the increasing coverage of grasslands or forested areas around orchid occurrences had a significant positive effect on the number of grassland or forest‐dwelling species and individuals, respectively. Most variance in orchid numerosity and diversity was explained by the cover of the suitable habitat types of the respective taxa in the surrounding landscape of the sampling points. This highlights the importance of roadsides acting as refugia for numerous species and valuable plant communities as well as in supporting biodiversity in general.  相似文献   
26.
27.
Anthropogenic features increasingly affect ecological processes with increasing human demand for natural resources. Such effects also have the potential to vary depending on the sex and age of an individual because of inherent behavioral and life experience differences. For the lesser prairie-chicken (Tympanuchus pallidicinctus), studies on male survival are limited because most previous research has been focused on females. To better understand patterns of lesser prairie-chicken survival in habitat with varying levels of anthropogenic infrastructure associated with oil and natural gas development, we monitored survival of 178 radio-tagged male and female lesser prairie-chickens in eastern New Mexico, USA, from 2013 to 2015. We examined the relationships of shrub cover, proximity to and density of anthropogenic features (i.e., utility poles), displacement of natural vegetation by anthropogenic features (i.e., area of roads and well pads), and individual demographics (i.e., sex, age) with lesser prairie-chicken survival. Furthermore, we categorized the probable cause of mortality and examined its relationship with oil and gas development intensity (indexed by utility pole density) within 1,425 m of an individual's mortality site or final observed location. We predicted that survival would be lower for individuals exposed to greater levels of anthropogenic features, and that males and subadults would be more negatively affected than females and adults because of increased exposure to predators during the lekking season and naiveté. Relationships between survival and utility pole density, sex, and age were supported in our top-ranked models, whereas models including other anthropogenic and natural features (i.e., roads, well pads, shrub cover) received little support. We predicted a substantial decrease in adult and subadult male survival with increasing densities of utility poles. The relationship between survival and utility pole density for females was weaker and not as clearly supported as for males. We did not find a detectable difference in utility pole counts among probable mortality causes. Our findings highlight the importance of including male lesser prairie-chickens in research and conservation planning, and the negative effect that high densities of anthropogenic features can have on lesser prairie-chicken survival. © 2021 The Wildlife Society.  相似文献   
28.
Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is causing rapid declines of foundation species‐structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context‐dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real‐world examples, to propose that facultative mutualisms may pose a double‐edged sword for foundation species. We suggest that by amplifying self‐facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species’ resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species‐structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.  相似文献   
29.
Dioecious alpine juniper has been influenced by human impacts, management and climate changes; hence, its present populations are remnant fragments of its former distribution in central Europe. Complex environmental shifts have had fatal consequences for growth, reproduction and health of juniper and hence for its population structure. We asked the questions: 1) what was the population size structure, the sex ratio and the health status of individuals? 2) How were the population parameters linked with the environmental conditions and surrounding vegetation? The study area was close and above the upper forest limit in central Europe, the Hrubý Jeseník Mts. The parameters of each juniper individual and its environmental conditions were obtained, Ellenberg's indicator values and habitat categories were also determined. Proportions of sex categories, shrub size and environmental conditions were investigated to assess relationships between the population categories and environmental factors. We revealed linkage among the shrub size, health vigor, vegetation cover, a habitat and environmental factors. While there was equal ratio of females and males (1:1), small individuals of undetermined sex predominated that reducing the effective population size. Juniper health vigor was associated with surrounding vegetation cover. Individuals of undetermined sex were smaller than those of remaining sex categories and prefer specific habitats at higher elevation, underlining the effect of abiotic conditions on sex performance and ratio. The observed pattern, which was attributed to shift in land-use practices in the middle of 20th century and climate changes, could be improved by management. We recommended experimental local grazing and mowing accompanying by profound and continuing assessment of interaction among environmental factors and juniper performance.  相似文献   
30.
Road ecology, the study of the impacts of roads and their traffic on wildlife, including birds, is a rapidly growing field, with research showing effects on local avian population densities up to several kilometres from a road. However, in most studies, the effects of roads on the detectability of birds by surveyors are not accounted for. This could be a significant source of error in estimates of the impacts of roads on birds and could also affect other studies of bird populations. Using road density, traffic volume and bird count data from across Great Britain, we assess the relationships between roads and detectability of a range of bird species. Of 51 species analysed, the detectability of 36 was significantly associated with road exposure, in most cases inversely. Across the range of road exposure recorded for each species, the mean positive change in detectability was 52% and the mean negative change was 36%, with the strongest negative associations found in smaller-bodied species and those for which aural cues are more important in detection. These associations between road exposure and detectability could be caused by a reduction in surveyors’ abilities to hear birds or by changes in birds’ behaviour, making them harder or easier to detect. We suggest that future studies of the impacts of roads on populations of birds or other taxa, and other studies using survey data from road-exposed areas, should account for the potential impacts of roads on detectability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号