首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6999篇
  免费   327篇
  国内免费   164篇
  7490篇
  2023年   62篇
  2022年   100篇
  2021年   102篇
  2020年   107篇
  2019年   178篇
  2018年   190篇
  2017年   128篇
  2016年   128篇
  2015年   159篇
  2014年   370篇
  2013年   469篇
  2012年   251篇
  2011年   361篇
  2010年   282篇
  2009年   403篇
  2008年   373篇
  2007年   392篇
  2006年   312篇
  2005年   362篇
  2004年   257篇
  2003年   252篇
  2002年   230篇
  2001年   133篇
  2000年   126篇
  1999年   130篇
  1998年   142篇
  1997年   98篇
  1996年   86篇
  1995年   105篇
  1994年   93篇
  1993年   77篇
  1992年   92篇
  1991年   55篇
  1990年   52篇
  1989年   51篇
  1988年   51篇
  1987年   46篇
  1986年   29篇
  1985年   55篇
  1984年   114篇
  1983年   78篇
  1982年   60篇
  1981年   65篇
  1980年   67篇
  1979年   62篇
  1978年   34篇
  1977年   29篇
  1976年   26篇
  1975年   19篇
  1974年   20篇
排序方式: 共有7490条查询结果,搜索用时 15 毫秒
91.
92.
Complement inhibition is to a large extent achieved by proteolytic degradation of activated complement factors C3b and C4b by factor I (FI). This reaction requires a cofactor protein that binds C3b/C4b. We found that the cofactor activity of C4b-binding protein towards C4b/C3b and factor H towards C3b increase at micromolar concentrations of Zn(2+) and are abolished at 2 mM Zn(2+) and above. 65Zn(2+) bound to C3b and C4b molecules but not the cofactors or FI when they were immobilized in a native form on a nitrocellulose membrane. Zn(2+) binding constants for C3met (0.2 microM) and C4met (0.1 microM) were determined using fluorescent chelator. It appears that higher cofactor activity at low zinc concentrations is due to an increase of affinity between C4b/C3b and cofactor proteins as assessed by surface plasmon resonance. Inhibition of the reaction seen at higher concentrations is due to aggregation of C4b/C3b.  相似文献   
93.
Redox and CO photolysis FTIR spectra of yeast cytochrome c oxidase WT and mutants are compared to those from bovine and P. denitrificans CcOs in order to establish common functional features. All display changes that can be assigned to their E242 (bovine numbering) equivalent and to weakly H-bonded water molecules. The additional redox-sensitive band reported at 1736?cm?1 in bovine CcO and previously assigned to D51 is absent from yeast CcO and couldn't be restored by introduction of a D residue at the equivalent position of the yeast protein. Redox spectra of yeast CcO also show much smaller changes in the amide I region, which may relate to structural differences in the region around D51 and the subunit I/II interface.  相似文献   
94.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   
95.
96.
The cytosolic pathogen sensor RIG‐I is activated by RNAs with exposed 5′‐triphosphate (5′‐ppp) and terminal double‐stranded structures, such as those that are generated during viral infection. RIG‐I has been shown to translocate on dsRNA in an ATP‐dependent manner. However, the precise role of the ATPase activity in RIG‐I activation remains unclear. Using in vitro‐transcribed Sendai virus defective interfering RNA as a model ligand, we show that RIG‐I oligomerizes on 5′‐ppp dsRNA in an ATP hydrolysis‐dependent and dsRNA length‐dependent manner, which correlates with the strength of type‐I interferon (IFN‐I) activation. These results establish a clear role for the ligand‐induced ATPase activity of RIG‐I in the stimulation of the IFN response.  相似文献   
97.
Single-turnover flash-induced ATP synthesis coupled to natural cyclic electron flow in Photosystem I-enriched subchloroplast vesicles (from spinach) was continuously followed by the luciferin-luciferase luminescence. The ATP yield per flash was maximal (1 ATP per s per 1000 Chl) around a flash frequency of 0.5–2 Hz. It decreased both at lower and higher flash frequencies. The decrease at high flash frequency was due to limitation by the electron-transfer rate, while the decrease at low flash frequency was directly due to intrinsic properties of the ATPase itself. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) decreased the yield at low frequency more than at high frequency. The same behaviour was observed if electron transfer was artificially mediated by pyocyanin. If the ADP concentration was increased from 40 to at least 80 μM, or if the vesicles were preincubated with 5 mM dithiothreitol (DTT), the decrease of the yield at flash frequencies below 0.5 Hz was no longer observed. Incubation with DTT increased the rates of ATP hydrolysis and synthesis at any flash frequency. The decrease of the yield could be elicited again by addition of 50 nM FCCP. It is concluded that at low levels of the protonmotive force (Δ gmH+), the ATPase is converted into an active ATP-hydrolyzing state in which ATP synthesis activity is decreased due to a decreased affinity towards ADP and/or to a decreased release of newly synthesized ATP, that can be cancelled by increasing the ADP concentration or by addition of DTT in the absence of uncoupler.  相似文献   
98.
The ATP·Mg-dependent protein phosphatase activating factor (Fa) has been identified and purified to near homogeneity from brain. In this report, as evidenced on SDS-polyacrylamide gel electrophoresis followed by autoradiography, factorFa has further been identified as a cAMP and Ca2+-independent brain kinase that could phosphorylate synapsin I, a neuronal protein that coats synaptic vesicles, binds to cytoskeleton, and is believed to be involved in the modulation of neurotransmission. Kinetic study further indicated that factorFa could phosphorylate synapsin I with a lowK m value of about 2 µM and with a molar ratio of 1 mol of phosphate per mole of protein. Peptide mapping analysis revealed that factorFa specifically phosphorylated the tail region of synapsin I but on a unique site distinct from those phosphorylated by Ca2+/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase, the two well-established synapsin I kinases. Functional study further revealed that factorFa could phosphorylate this unique specific site on the tail region of synapsin I and thereby inhibit cross-linking of synapsin I with microtubules. The results further suggest the possible involvement of factorFa as a synapsin I kinase in the regulation of axonal transport process of synaptic vesicles via the promotion of vesicles motility during neurotransmission.  相似文献   
99.
We analyzed the patterns of variation of haplogroup D1 in central Argentina, including new data and published information from other populations of South America. Almost 28% (107/388) of the individuals sampled in the region belong to haplogroup D1, whereas more than 52% of them correspond to the recently described subhaplogroup D1j (Bodner et al.: Genome Res 22 (2012) 811–820), defined by the presence of additional transitions at np T152C–C16242T–T16311C to the nodal D1 motif. This lineage was found at high frequencies across a wide territory with marked geographical–ecological differences. Additionally, 12 individuals present the mutation C16187T that defines the recently named subhaplogroup D1g (Bodner et al.: Genome Res 22 (2012) 811–820), previously described in populations of Patagonia and Tierra del Fuego. Based on our results and additional data already published, we postulate that the most likely origin of subhaplogroup D1j is the region of Sierras Pampeanas, which occupies the center and part of the northwestern portion of Argentina. The extensive yet restricted geographical distribution, the relatively large internal diversity, and the absence or low incidence of D1j in other regions of South America suggest the existence of an ancient metapopulation covering the Sierras Pampeanas, being this lineage its genetic signature. Further support for a scenario of local origin for D1j in the Sierras Pampeanas stems from the fact that early derivatives from a putative ancestral lineage carrying the transitions T16311C–T152C have only been found in this region, supporting the hypothesis that it might represent an ancestral motif previous to the appearance of D1j‐specific change C16242T. © 2012 Wiley Periodicals, Inc.  相似文献   
100.
《Process Biochemistry》2014,49(10):1718-1722
Serratia proteamaculans metalloprotease (SPP) was successfully secreted by a heterologous ABC protein exporter, the Pseudomonas fluorescens TliDEF, in recombinant host strains. Escherichia coli and P. fluorescens cells containing the SPP-encoding gene showed the extracellular protease activity only when the TliDEF-encoding gene cluster was coexpressed. Recombinant P. fluorescens produced an approximately 34.8-fold higher amount of extracellular SPP than did E. coli. The use of a more nutrient-rich medium and controlled dissolved oxygen conditions was effective in increasing SPP secretion in P. fluorescens batch fermentation (an 8.7-fold increase from 41.8 U/mL to 365.2 U/mL). Therefore, SPP, which could not be secreted without an ABC protein exporter, was produced in large quantities by applying the heterologous TliDEF exporter in P. fluorescens. The results also suggest that the use of the ABC protein exporter in P. fluorescens could be an efficient production platform for an industrially promising type I secretion pathway-dependent enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号