首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   13篇
  国内免费   20篇
  2023年   8篇
  2022年   8篇
  2021年   15篇
  2020年   12篇
  2019年   14篇
  2018年   19篇
  2017年   6篇
  2016年   10篇
  2015年   13篇
  2014年   30篇
  2013年   36篇
  2012年   17篇
  2011年   30篇
  2010年   25篇
  2009年   16篇
  2008年   28篇
  2007年   22篇
  2006年   31篇
  2005年   24篇
  2004年   16篇
  2003年   10篇
  2002年   18篇
  2001年   6篇
  2000年   6篇
  1999年   21篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   9篇
  1994年   1篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
91.
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein–protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein–protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.  相似文献   
92.
Estrogen treatment of hatchling female zebra finches causes the masculine development of singing behavior and of the telencephalic brain regions involved in the control of song. However, early estrogen treatment of males also blocks masculine development of copulatory behavior, presumably controlled by diencephalic regions. In an effort to determine whether the differences in estrogen action are related to sex and regional differences in androgen metabolism (estrogen synthesis or androgen inactivation), we measured aromatase and 5β-reductase activity in dissociated-cell cultures made separately from the telencephalon, diencephalon, and also cerebellum of hatching zebra finches under a variety of conditions. Cultures from all three brain regions express high levels of aromatase and 5β-reductase activity. Comparisons between telencephalic and diencephalic cultures of the activity and kinetics of aromatase suggest that the telencephalic cultures convert androgen to estrogen more efficiently than diencephalic cultures, which might be important in the differential action of estrogen in the two brain regions. However, the activity of neither aromatase nor 5β-reductase was significantly different between the sexes in either telencephalic or diencephalic cultures. Thus, comparisons between the sexes do not support the idea that differences in posthatching aromatase or 5β-reductase activity account for the pattern of sexual differentiation of the song and copulatory systems. © 1995 John Wiley & Sons, Inc.  相似文献   
93.
Previous studies have suggested that both major active metabolites of testosterone, estradiol (E2) and dihydrotestosterone (DHT), are needed for complete masculinization of the brain regions that control song in passerine birds. However, DHT treatment of hatchling female zebra finches has only small masculinizing effects on the song system. To assess whether E2 and DHT have a synergistic effect on the masculinization of the zebra finch song system, female zebra finches were given Silastic implants of E2 on the day of hatching (day 1) either without any additional hormone treatment or in combination with DHT on days 1, 14, or 70. At 105 to 110 days of age, we measured the volumes of Area X, higher vocal center (HVC), robust nucleus of the archistriatum (RA), soma sizes in HVC, RA, and the lateral magnocellular nucleus of the neostriatum (lMAN), and neuron density and number in RA. E2 masculinized all of the measures in the song system with the exception of the number of neurons in RA. DHT did not synergize with E2 to produce any additional masculinization of the attributes measured. These data demonstrate that the combination of E2 and DHT did not result in the complete masculinization of the song control nuclei and argue against the importance of androgen in sexual differentiation of the song system. © 1995 John Wiley & Sons, Inc.  相似文献   
94.
Steroid hormones and neurotrophic factors exert profound and widespread effects on the developing nervous system, including regulation of the size, connectivity, and survival of neurons. Androgenic control of the survival of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats has been well documented. We previously found that ciliary neurotrophic factor (CNTF) mimics many effects of androgen on the developing SNB. Whether effects of CNTF depend on the presence of a functional androgen receptor was evaluated in the present study. Androgen-insensitive male rats bearing the testicular feminization mutation, Tfm, and female littermates were treated with CNTF or with vehicle alone from embryonic day 22 through postnatal day 3. On postnatal day 4 SNB cell number was elevated in both groups receiving CNTF. Volumes of the bulbocavernosus (BC) and levator ani (LA) muscles, targets of SNB motoneurons, were also markedly increased by CNTF. Since the BC appears to degenerate completely in untreated females, these results indicate that CNTF can delay or prevent muscle fiber death. The relative sparing of muscles and motoneurons did not differ for Tfm males and females, demonstrating that effects of CNTF on the SNB neuromuscular system do not require functional androgen receptors. © 1995 John Wiley & Sons, Inc.  相似文献   
95.
The polyclonal antiserum PG21 was used to detect androgen receptor (AR) protein in three motoneuronal pools of the male rat lumbar spinal cord. In gonadally intact, wild-type males, the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus (DLN), and retrodorsolateral nucleus (RDLN) all displayed immunolabeling of cell nuclei. The percentage of motoneurons displaying such labeling was highest in the SNB and lowest in the RDLN. This pattern of AR immunocytochemical labeling agrees well with previous steroid autoradiographic studies of androgen accumulation in the rat spinal cord. In contrast, virtually no motoneurons in any of the three pools displayed nuclear AR immunostaining in long-term gonadectomized males or in gonadally intact males carrying the Tfm mutation, which renders the AR incompetent. In gonadectomized males, labeling was restored in the SNB and DLN, but not the RDLN, 30 min after an injection of replacement testosterone. Eight hours of testosterone exposure restored immunolabeling in all three motor nuclei. Apparent cytoplasmic staining was seen in SNB motoneurons of untreated castrates and Tfm rats, but not intact rats, suggesting that AR residing in the cytoplasm translocates to the nucleus on binding to androgen in these motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   
96.
Plasma 11‐Ketotestosterone (11 KT) and testosterone (T) levels and spiggin‐mRNA levels, as well as the kidney‐somatic index ( I K) were measured in sexual males and in paternal males at the middle (5 days paternal) and at the end (8 days paternal with hatched eggs) of the nesting cycle in three‐spined sticklebacks Gasterosteus aculeatus from two populations. Glueing (using threads of 11 KT induced kidney‐protein spiggin) and fanning behaviour was measured daily. Fanning increased in paternal fish and remained low in sexual males. Plasma 11 KT and T levels, on the other hand, declined significantly in parental compared to sexual males as did spiggin expression, I K and glueing behaviour. Thus, the drastic decrease in circulating 11 KT levels during the later parental phase may have resulted in an energy‐saving decrease in spiggin‐production and glueing, when this was no longer needed for nest maintenance. In addition, the mRNA levels of the β‐subunits of both gonadotropins, luteinising hormone (LH) and follicle stimulating hormone (FSH) were measured. The expression of both gonadotropins declined in the parental phase (not significant for β‐FSH in one of the populations) which was consistent with a decline in androgen levels possibly controlled via decreased gonadotropin secretion.  相似文献   
97.
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.  相似文献   
98.
Androgens exert their effects through androgen receptors (AR) in tissues. We investigated the distribution of AR in female mole rat tissues. Tissues were excised, fixed with 10% formalin and embedded in paraffin. Sections were stained after microwave antigen retrieval for immunohistochemistry. Immunostaining of AR immunostaining was detected in the nucleus or cytoplasm of the cells in the cerebral cortex, cerebellum, anterior pituitary, lung, liver, uterus and skin. Granulosa and some thecal cells in the ovary, cardiac muscle cells and adipose cells exhibited a nuclear reaction for AR. In the kidney, labeling of AR was restricted to the cytoplasm of tubule cells. We found that AR could be detected using immunohistochemistry in the nucleus or cytoplasm or both in the presence of androgens.  相似文献   
99.
The sex-linked recessive gene Tfm in the mouse produces a condition of testicular feminization (androgen insensitivity syndrome, AIS) in hemizygotes, comparable to the condition of the same name in humans. The murine mutant was originally believed to have no derivatives of the mesonephric duct system (MDS), and this absence was ascribed to dependence of these derivatives on androgens for survival. However, microscopical epi-didymides, retia testes, and vasa deferentia were identified in these animals in our laboratory. These micro-organs may play a role in meiosis induction in Tfm/Y animals. The present study was designed to determine whether survival of these organs is due to retention of an ability to respond to androgens, or whether they are unique amongst MDS derivatives in being independent of androgens. Previous studies in our laboratory demonstrated that the enzyme β-glucuronidase (βG) is androgen sensitive in the epididymis of the normal mouse. In the present investigation we used this enzyme as a marker to study androgen sensitivity in the microscopical epididymides of Tfm/Y hemizygotes and in the epididymides of control +/Y litter-mate brothers. Both mutant and control animals were studied with and without exogenous androgen stimulation. Tfm/Y hemizygotes demonstrated low levels of diffuse, cytoplasmic βG activity that appears to be unresponsive to exogenous androgen stimulation. In light of our previous studies, this distribution of βG reaction products suggests some degree of androgen sensitivity. The survival of these micro-organs and their partial androgen sensitivity may be related to the role of the MDS in inducing meiosis.  相似文献   
100.
Androgens have significant and varied actions in women and there is now acknowledgment that women may experience symptoms secondary to androgen deficiency. There is also substantial evidence that prudent androgen replacement can be effective in relieving both the physical and psychological symptoms of androgen insufficiency, and is indicated for clinically affected women. Testosterone replacement for women is now available in a variety of formulations. It appears to be safe, with the caveat that doses are restricted to the ‘therapeutic’ window for androgen replacement in women, such that the beneficial effects on wellbeing and quality of life are achieved without incurring undesirable virilizing side effects.

The predominant symptom of women with androgen deficiency is loss of sexual desire. This is not limited to women experiencing a surgical menopause but may also be a feature of women who have either undergone premature or natural menopause. There is increasing interest in other uses of androgen replacement in women that include premenopausal iatrogenic androgen deficiency states, glucocorticosteroid-induced bone loss, management of wasting syndromes and possibly premenopausal bone loss, premenopausal loss of libido and the treatment of the premenstrual syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号