首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3665篇
  免费   286篇
  国内免费   417篇
  2024年   13篇
  2023年   89篇
  2022年   102篇
  2021年   127篇
  2020年   140篇
  2019年   143篇
  2018年   141篇
  2017年   118篇
  2016年   138篇
  2015年   136篇
  2014年   160篇
  2013年   256篇
  2012年   146篇
  2011年   171篇
  2010年   143篇
  2009年   165篇
  2008年   188篇
  2007年   218篇
  2006年   199篇
  2005年   153篇
  2004年   136篇
  2003年   137篇
  2002年   129篇
  2001年   116篇
  2000年   91篇
  1999年   67篇
  1998年   62篇
  1997年   65篇
  1996年   43篇
  1995年   39篇
  1994年   49篇
  1993年   40篇
  1992年   34篇
  1991年   33篇
  1990年   33篇
  1989年   25篇
  1988年   22篇
  1987年   20篇
  1986年   18篇
  1985年   46篇
  1984年   34篇
  1983年   25篇
  1982年   32篇
  1981年   22篇
  1980年   16篇
  1979年   21篇
  1978年   13篇
  1977年   20篇
  1976年   8篇
  1975年   12篇
排序方式: 共有4368条查询结果,搜索用时 15 毫秒
951.
By molecular analysis of a high number of gammarids, including 29 out‐group genera, we could assure the monophyly of Gammaridae. To avoid the paraphyly of the family, we propose the omission of Pontogammaridae, Typhlogammaridae, and all Baikalian families. Similarly, the genera Fontogammarus, Sinogammarus, Lagunogammarus, Pephredo, Neogammarus, and Laurogammarus may be cancelled. But, tens of Baikal genera, nested within Gammarus, are so diverse that they must be retained, although rendering Gammarus paraphyletic. Besides we propose the polyphyletic Echinogammarus–Chaetogammarus group to be divided into monophyletic genera Echinogammarus s. str., Homoeogammarus, Parhomoeogammarus, Marinogammarus, R elictogammarus gen. nov. , Chaetogammarus, and T richogammarus gen. nov. These solutions made it possible to complete the first analysis of the family evolution in light of its phylogeny. Perimarine clades are mainly basally split clades, whereas in some ancient lakes extremely rich endemic faunas had developed polyphyletically. The troglobiotic Typhlogammarus group from Dinarides and Caucasus formed a monophylum, whereas the troglobiotic assemblage of Gammarus species is highly polyphyletic. Reduction of the uropod III endopodite, which classically distinguishes between the genera Gammarus and Echinogammarus, appeared to be highly polyphyletic. Protective dorsal pleonal projections occur scattered across the family and beyond, whereas lateral projections were limited to species of ancient lakes, so both structures were polyphyletic. The evolutionary history of Gammaridae was investigated with ten different calibration schemes, which produced incompatible results; however, the most probable scenario is a late rise of the family, which can only explain the absence of Gammaridae species around the Indo‐Pacific. © 2015 The Linnean Society of London  相似文献   
952.
The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na+ and Cl in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.  相似文献   
953.
This study investigated the relationships between behavioural responses of Atlantic salmon Salmo salar smolts to saltwater (SW) exposure and physiological characteristics of smolts in laboratory experiments. It concurrently described the behaviour of acoustically tagged smolts with respect to SW and tidal cycles during estuary migration. Salmo salar smolts increased their use of SW relative to fresh water (FW) from April to June in laboratory experiments. Mean preference for SW never exceeded 50% of time in any group. Preference for SW increased throughout the course of smolt development. Maximum continuous time spent in SW was positively related to gill Na+, K+‐ATPase (NKA) activity and osmoregulatory performance in full‐strength SW (measured as change in gill NKA activity and plasma osmolality). Smolts decreased depth upon reaching areas of the Penobscot Estuary where SW was present, and all fish became more surface oriented during passage from head of tide to the ocean. Acoustically tagged, migrating smolts with low gill NKA activity moved faster in FW reaches of the estuary than those with higher gill NKA activity. There was no difference in movement rate through SW reaches of the estuary based on gill NKA activity. Migrating fish moved with tidal flow during the passage of the lower estuary based on the observed patterns in both vertical and horizontal movements. The results indicate that smolts select low‐salinity water during estuary migration and use tidal currents to minimize energetic investment in seaward migration. Seasonal changes in osmoregulatory ability highlight the importance of the timing of stocking and estuary arrival.  相似文献   
954.
955.
956.
A series of new benzimidazolium salts (1ag) were synthesized from the reaction of 1-(4-vinylbenzyl)benzimidazole with various alkyl halides. These salts were used to synthesize silver N-heterocyclic carbene (Ag-NHC) complexes (2af). The thirteen compounds were characterized by FT-IR, NMR (1H and 13C) spectroscopic methods and an elemental analysis technique. These selected candidates were tested for their in vitro antimicrobial activities. Antibacterial and antifungal results indicated that the new salts, and particularly their silver complexes, were found to be strongly effective against seven Gram (?) bacterial strains, three Gram (+) bacterial strains and one yeast (Candida albicans).  相似文献   
957.
958.
黄河三角洲柽柳植株周围土壤盐分离子的分布   总被引:5,自引:0,他引:5  
张立华  陈沛海  李健  陈小兵  冯亚 《生态学报》2016,36(18):5741-5749
为探讨柽柳的盐分富集效应及其对不同盐分离子分布的影响,以黄河三角洲盐碱地柽柳为研究对象,分析了离植株不同距离不同土层中的盐分离子组成、含量、离子比及不同离子之间的相关性。研究结果表明:各土层阳离子中Na~+含量最高,其次是Ca~(2+)和Mg~(2+),K~(+)最低,Cl~(-)在阴离子中的含量最高,SO_4~(2-)次之,HCO_3~-最低,而未检测到CO_3~(2-)。在柽柳植株周围,尤其是表层土壤中,离植株越近盐分含量越高,显示出柽柳对盐分的富集效应,其中对不同阳离子的富集程度表现为K~+Na~+Mg~(2+)Ca~(2+),而对阴离子的富集程度表现为HCO_3~-Cl~-SO_4~(2-)。冠层下凋落物中盐分的释放和树干径流可能是导致盐分在柽柳植株周围水平方向上存在差异的主要原因。土壤总可溶性盐含量随着土层的加深而升高。阳离子和阴离子向下迁移程度分别表现为Na~+Mg~(2+)Ca~(2+)K+和Cl~-SO_4~(2-)≈HCO_3~-,因而随土层加深而升高的Na~+、Ca~(2+)、Mg~(2+)和Cl~-,显示出底聚特征,而K+、SO_4~(2-)和HCO_3~-含量则随着土层的加深而降低,具有表聚特征。降水淋溶、盐分离子迁移速率的差别和各土层中不同生物量根系对盐分吸收的差异可能是造成盐分在垂直方向上含量变化的主要因素。  相似文献   
959.
Proline (Pro) and glycine betaine (GB) contents were determined in two Mediterranean halophytes, Plantago crassifolia and Inula crithmoides, to assess their possible role in salt tolerance of both taxa. Plant material was collected in a littoral salt marsh under different environmental conditions, and from plants subjected to salt treatments in a growth chamber. Relative growth inhibition by NaCl indicated that I. crithmoides is more salt-tolerant than P. crassifolia, in agreement with the distribution of the two species in nature. Field and laboratory data confirmed GB as the major osmolyte responsible for osmotic adjustment in I. crithmoides, but with only a minor role – if any – as “osmoprotectant” in the salt tolerance of P. crassifolia. Under natural conditions, Pro contents were very low in both taxa, but increased to levels high enough to contribute significantly to osmotic balance when plants were artificially treated with 450–600 mM NaCl – higher salt concentrations than those they would normally encounter in their natural habitats. These data suggest that halophytes possess built-in mechanisms, such as accumulation of additional osmolytes, to rapidly adapt to increasing salinity levels in their natural ecosystems; for example, those expected to be caused by climate change in salt marshes in the Mediterranean region.  相似文献   
960.
Controlled conditions were used to investigate how salinity maintains the salt tolerance of seeds and seedlings of the euhalophyte Suaeda salsa. Seeds were harvested from S. salsa plants that had been treated with 1 or 500 mM NaCl for 113 days in a glasshouse. The results showed that high salinity (500 mM NaCl) increased chlorophyll concentration and oxygen production in embryos of maturing seeds. At 500 mM NaCl, the phosphatidylglycerol and sulfoquinovosyldiacylglycerol levels and the digalactosyldiacylglycerol/monogalactosyldiacylglycerol ratio were higher in young seedlings derived from seeds whose source plants were cultured in 500 mM rather than in 1 mM NaCl. When seeds were incubated with 600 mM NaCl, the conductivity and malondialdehyde concentration in the embryos was greater if the source plants had been cultured in 1 mM rather than in 500 mM NaCl. The opposite pattern was evident for seedling survival and shoot weight. In conclusion, salinity during seed maturation may increase the salt tolerance of seeds and seedlings by increasing the oxygen production in the embryos of the maturing seeds and by changing the lipid composition of membranes in the seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号