首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   80篇
  国内免费   36篇
  2024年   2篇
  2023年   19篇
  2022年   16篇
  2021年   25篇
  2020年   32篇
  2019年   31篇
  2018年   30篇
  2017年   27篇
  2016年   28篇
  2015年   33篇
  2014年   45篇
  2013年   62篇
  2012年   42篇
  2011年   53篇
  2010年   51篇
  2009年   44篇
  2008年   71篇
  2007年   52篇
  2006年   51篇
  2005年   47篇
  2004年   41篇
  2003年   26篇
  2002年   31篇
  2001年   16篇
  2000年   21篇
  1999年   13篇
  1998年   12篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   9篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   3篇
  1976年   1篇
排序方式: 共有985条查询结果,搜索用时 312 毫秒
51.
Blue native electrophoresis is used widely for the analysis of non-dissociated protein complexes with respect to composition, oligomeric state and molecular mass. However, the effects of detergent or dye binding on the mass and stability of the integral membrane proteins have not been studied. By comparison with analytical ultracentrifugation, we have evaluated whether the oligomeric state of membrane transport proteins is reflected reliably with blue native electrophoresis. For the analysis we have used two well-characterized transporters, that is, the major facilitator superfamily protein LacS and the phosphotransferase system EII(Mtl). For another member of the major facilitator superfamily, the xyloside transporter XylP from Lactobacillus pentosus, the complete analysis of the quaternary structure determined by analytical ultracentrifugation and freeze-fracture electron microscopy is presented.Our experiments show that during blue native electrophoresis the detergent bound to the proteins is replaced by the amphipathic Coomassie brilliant blue (CBB) dye. The mass of the bound CBB dye was quantified. Provided this additional mass of bound CBB dye is accounted for and care is taken in the choice and concentration of the detergent used, the mass of LacS, XylP and EII(Mtl) and four other membrane (transport) proteins could be deduced within 10 % error. Our data underscore the fact that the oligomeric state of many membrane transport proteins is dimeric.  相似文献   
52.
Historical population collapses caused by rinderpest epidemics are hypothesized to have resulted in notable genetic losses in populations of the African buffalo. Polymorphism in the major histocompatibity complex (MHC) DRB3 gene was probed by means of restriction analysis of the sequence encoding the peptide-binding region. Nucleotide substitution patterns agreed with a positive selection acting on this fitness-relevant locus. Buffalo populations from four National Parks, situated in eastern and southern Africa, each revealed a surprisingly high allelic diversity. Current high levels of heterozygosity may be reconciled with historical bottlenecks by assuming that local extinctions were followed by fast recolonization, in accordance with the high dispersive capabilities of buffalo. The specific amplification of DRB3 alleles also enabled the assignment of individual genotypes. For each population sample a deficiency in the expected number of heterozygous animals was found. As overdominant selection on the MHC is predicted to yield an excess of heterozygous individuals, this may not be a locus-specific effect. Several other explanations are discussed, of which increased homozygosity caused by nonrandom mating of buffalo in populations seems the most probable.  相似文献   
53.
The genetic structure of contemporary populations can be shaped by both their history and current ecological conditions. We assessed the relative importance of postglacial colonization history and habitat type in the patterns and degree of genetic diversity and differentiation in northern European nine‐spined sticklebacks (Pungitius pungitius), using mitochondrial DNA (mtDNA) sequences and 12 nuclear microsatellite and insertion/deletion loci. The mtDNA analyses identified – and microsatellite analyses supported – the existence of two historically distinct lineages (eastern and western). The analyses of nuclear loci among 51 European sites revealed clear historically influenced and to minor degree habitat dependent, patterns of genetic diversity and differentiation. While the effect of habitat type on the levels of genetic variation (coastal > freshwater) and differentiation (freshwater > coastal) was clear, the levels of genetic variability and differentiation in the freshwater sites were independent of habitat type (viz. river, lake and pond). However, levels of genetic variability, together with estimates of historical effective population sizes, decreased dramatically and linearly with increasing latitude. These geographical patterns of genetic variability and differentiation suggest that the contemporary genetic structure of freshwater nine‐spined sticklebacks has been strongly impacted by the founder events associated with postglacial colonization and less by current ecological conditions (cf. habitat type). In general, the results highlight the strong and persistent effects of postglacial colonization history on genetic structuring of northern European fauna and provide an unparalleled example of latitudinal trends in levels of genetic diversity.  相似文献   
54.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   
55.
In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome.  相似文献   
56.
Protein loops are often involved in important biological functions such as molecular recognition, signal transduction, or enzymatic action. The three dimensional structures of loops can provide essential information for understanding molecular mechanisms behind protein functions. In this article, we develop a novel method for protein loop modeling, where the loop conformations are generated by fragment assembly and analytical loop closure. The fragment assembly method reduces the conformational space drastically, and the analytical loop closure method finds the geometrically consistent loop conformations efficiently. We also derive an analytic formula for the gradient of any analytical function of dihedral angles in the space of closed loops. The gradient can be used to optimize various restraints derived from experiments or databases, for example restraints for preferential interactions between specific residues or for preferred backbone angles. We demonstrate that the current loop modeling method outperforms previous methods that employ residue‐based torsion angle maps or different loop closure strategies when tested on two sets of loop targets of lengths ranging from 4 to 12. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
57.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
58.
Although most natural populations are genetically subdivided, they are often analysed as if they were panmictic units. In particular, signals of past demographic size changes are often inferred from genetic data by assuming that the analysed sample is drawn from a population without any internal subdivision. However, it has been shown that a bottleneck signal can result from the presence of some recent immigrants in a population. It thus appears important to contrast these two alternative scenarios in a model choice procedure to prevent wrong conclusions to be made. We use here an Approximate Bayesian Computation (ABC) approach to infer whether observed patterns of genetic diversity in a given sample are more compatible with it being drawn from a panmictic population having gone through some size change, or from one or several demes belonging to a recent finite island model. Simulations show that we can correctly identify samples drawn from a subdivided population in up to 95% of the cases for a wide range of parameters. We apply our model choice procedure to the case of the chimpanzee (Pan troglodytes) and find conclusive evidence that Western and Eastern chimpanzee samples are drawn from a spatially subdivided population.  相似文献   
59.
The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.  相似文献   
60.
During the late phase of human immunodeficiency virus type-1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to lipid raft regions of specific cellular membranes, where they assemble and bud to form new virus particles. Gag binds preferentially to the plasma membrane (PM) of most hematopoietic cell types, a process mediated by interactions between the cellular PM marker phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P(2)) and Gag's N-terminally myristoylated matrix (MA) domain. We recently demonstrated that PI(4,5)P(2) binds to a conserved cleft on MA and promotes myristate exposure, suggesting a role as both a direct membrane anchor and myristyl switch trigger. Here we show that PI(4,5)P(2) is also capable of binding to MA proteins containing point mutations that inhibit membrane binding in vitro, and in vivo, including V7R, L8A and L8I. However, these mutants do not exhibit PI(4,5)P(2) or concentration-dependent myristate exposure. NMR studies of V7R and L8A MA reveal minor structural changes that appear to be responsible for stabilizing the myristate-sequestered (myr(s)) species and inhibiting exposure. Unexpectedly, the myristyl group of a revertant mutant with normal PM targeting properties (V7R,L21K) is also tightly sequestered and insensitive to PI(4,5)P(2) binding. This mutant binds PI(4,5)P(2) with twofold higher affinity compared with the native protein, suggesting a potential compensatory mechanism for membrane binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号