首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   55篇
  国内免费   141篇
  1234篇
  2024年   4篇
  2023年   24篇
  2022年   25篇
  2021年   27篇
  2020年   26篇
  2019年   32篇
  2018年   22篇
  2017年   26篇
  2016年   20篇
  2015年   34篇
  2014年   37篇
  2013年   74篇
  2012年   38篇
  2011年   76篇
  2010年   31篇
  2009年   64篇
  2008年   50篇
  2007年   45篇
  2006年   59篇
  2005年   50篇
  2004年   35篇
  2003年   31篇
  2002年   43篇
  2001年   36篇
  2000年   28篇
  1999年   19篇
  1998年   26篇
  1997年   28篇
  1996年   23篇
  1995年   26篇
  1994年   17篇
  1993年   25篇
  1992年   21篇
  1991年   16篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   2篇
  1986年   15篇
  1985年   22篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
排序方式: 共有1234条查询结果,搜索用时 19 毫秒
61.
The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM® process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation.  相似文献   
62.
Summary Anaerobic microbial communities sampled from either a methanogenic or sulfate-reducing aquifer site have been tested for their ability to degrade a variety of groundwater pollutants, including halogenated aromatic compounds, simple alkyl phenols and tetrachloroethylene. The haloaromatic chemicals were biodegraded in methanogenic incubations but not under sulfate-reducing conditions. The primary degradative event was typically the reductive removal of the aryl halides. Complete dehalogenation of the aromatic moiety was required before substrate mineralization was observed. The lack of dehalogenation activity in sulfatereducing incubations was due, at least in part, to the high levels of sulfate rather than a lack of metabolic potential. In contrast, the degradation of cresol isomers occurred in both types of incubations but proved faster under sulfate-reducing conditions. The requisite microorganisms were enriched and the degradation pathway forp-cresol under the latter conditions involved the anaerobic oxidation of the aryl methyl group. Tetrachloroethylene was also degraded by reductive dehalogenation but under both incubation conditions. The initial conversion of this substrate to trichloroethylene was generally faster under methanogenic conditions. However, the transformation pathway slowed when dichloroethylene was produced and only trace concentrations of vinyl chloride were detected. These results illustrate that pollutant compounds can be biodegraded under anoxic conditions and a knowledge of the predominant ecological conditions is essential for accurate predictions of the transport and fate of such materials in aquifers.  相似文献   
63.
Methane production was studied in a laboratory-scale 10 L anaerobic upflow sludge bed (UASB) reactor with periodic variations of the reactor temperature. On a daily basis the temperature was varied between 35 and 45 degrees C or 35 and 55 degrees C with a heating period of 6 h. Each temperature increase was accompanied by an increase in methane production and a decrease in the concentration of soluble organic matter in the effluent. In comparison to a reactor operated at 35 degrees C, a net increase in methane production of up to 22% was observed. Batch activity tests demonstrated a tolerance of mesophilic methanogenic populations to short-term, 2-6 h, temperature increases, although activity of acetoclastic methanogens decreased after 6 h exposure to a temperature of 55 degrees C. 16S sequencing of DGGE bands revealed proliferation of temperature-tolerant Methanospirillum hungatii sp. in the reactor.  相似文献   
64.
添加厨余垃圾对剩余污泥厌氧消化产沼气过程的影响   总被引:4,自引:0,他引:4  
为提高剩余污泥厌氧消化的沼气产量和甲烷含量,研究了厨余垃圾的不同添加量对剩余污泥厌氧消化性能的影响。结果表明,在35℃下,随着剩余污泥中厨余垃圾添加量的增加,厌氧消化系统中碳氮质量比(C/N)、胞外多聚物(EPS)等生理生化指标均有不同程度的改善。其中当剩余污泥与厨余垃圾质量比为2:1时,混合有机废弃物中沼气产量和甲烷含量均达到最大值,每克挥发性固体(VS)产生了156.56mL沼气,甲烷体积分数为67.52%,分别比剩余污泥单独厌氧消化时的产气量提高了5倍和1.5倍。  相似文献   
65.
A role for haemoglobin in all plant roots?   总被引:2,自引:2,他引:2  
Abstract. We have found haemoglobin in plant roots whereas previously it has been recorded only in nitrogen fixing nodules of plants. Haemoglobin occurs not only in the roots of those plants that are capable of nodulation but also in the roots of species that are not known to nodulate. We suggest that a haemoglobin gene may be a component of the genome of all plants. The gene structure and sequence in two unrelated families of plants suggests that the plant haemoglobins have had a single origin and that this origin relates to the haemoglobin gene of the animal kingdom. At present we cannot completely rule out the possibility of a horizontal transfer of the gene from the animal kingdom to a progenitor of the dicotyledonous angiosperms but we favour a single origin of the gene from a progenitor organism to both the plant and animal kingdoms. We speculate about the possible functions of haemoglobin in plant roots and put the case that it is unlikely to have a function in facilitating oxygen diffusion. We suggest that haemoglobin may act as a signal molecule indicating oxygen deficit and the consequent need to shift plant metabolism from an oxidative to a fermentative pathway of energy generation.  相似文献   
66.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   
67.
Bulking sludge in biological nutrient removal systems   总被引:2,自引:0,他引:2  
Bulking sludge problems are commonly reported in biological nutrient removal (BNR) systems. This has led to the general belief that intrinsic BNR conditions favor the growth of undesirable and excessive filamentous bacteria. The present study shows that other factors have a major role in bulking, and not the BNR conditions. These factors have been verified in well-controlled, strictly anoxic-aerobic and strictly anaerobic-aerobic sequencing batch reactor systems. The experimental results show that conditions known to be responsible for bulking sludge in aerobic systems (i.e., low concentration of electron donor and/or electron acceptor) did not lead to bulking. Even when acetate was present at very low concentrations in the aerobic stage of an anaerobic-aerobic bio-P system, the sludge settleability remained very good. This clearly demonstrates that good bio-P activity can stabilize and improve sludge settleability. The presence of microaerophilic conditions in the anoxic stage of the anoxic-aerobic system was the only factor leading to worsening sludge settling characteristics. The results are discussed in light of our previous hypothesis about the importance of diffusion-limited substrate uptake for the development of filamentous structures in biological flocs. The hypothesis is extended to anaerobic-aerobic and anoxic-aerobic conditions, typical of BNR-activated sludge systems. Taking into account the effect of feeding patterns on biochemical rates and on the development of filamentous bacterial structures, we recommend the adoption of plug-flow selector configurations, with strictly anaerobic and/or strictly anoxic conditions, wherein microaerophilic conditions are excluded, in order to maintain reliable and robust BNR performance.  相似文献   
68.
Due to the recent enactment of a stricter drinking water standard for arsenate, large quantities of arsenate-laden drinking water residuals will be disposed in municipal landfills. The objective of this study was to determine the role of methanogenic consortia on the conversion of arsenate. Methanogenic conditions commonly occur in mature municipal solid waste landfills. The results indicate the rapid and facile reduction of arsenate to arsenite in methanogenic sludge. Endogenous substrates in the sludge were sufficient to support the reductive biotransformation. However the rates of arsenate reduction were stimulated by the addition of exogenous electron donating substrates, such as H2, lactate or a mixture of volatile fatty acids. A selective methanogenic inhibitor stimulated arsenate reduction in microcosms supplied with H2, suggesting that methanogens competed with arsenate reducers for the electron donor. Rates of arsenate reduction increased with arsenate concentration up to 2 mM, higher concentrations were inhibitory. The electron shuttle, anthraquinone-2,6-disulfonate, used as a model of humic quinone moieties, was shown to significantly increase rates of arsenate reduction at substoichiometric concentrations. The presence of sulfur compounds, sulfate and sulfide, did not affect the rate of arsenate transformation but lowered the yield of soluble arsenite, due to the precipitation of arsenite with sulfides. The results taken as a whole suggest that arsenate disposed into anaerobic environments may readily be converted to arsenite increasing the mobility of arsenic. The extent of the increased mobility will depend on the concentration of sulfides generated from sulfate reduction.  相似文献   
69.
The Etest is widely used for measuring the susceptibility of Helicobacter pylori to metronidazole. By using 55 H. pylori isolates from 55 patients and a standard H. pylori strain, NCTC11637, we compared metronidazole susceptibility results obtained from the Etest with or without anaerobic preincubation to those obtained from the agar dilution method. Mueller Hinton agar plates supplemented with 5% horse blood were used for both methods. For the Etest, plates were incubated for 72 hr at 35 C under microaerophilic conditions after 0-, 4- or 24-hr periods of anaerobic preincubation. For the agar dilution method, the plates were incubated at the same microaerophilic conditions as those for the Etest. Without anaerobic preincubation for the Etest, 39 of the 56 (70%) H. pylori isolates were categorized as resistant to metronidazole (minimal inhibitory concentration>8 mg/liter), whereas only one of the 56 (1.8%) isolates was resistant according to the agar dilution method. The resistant and susceptible agreement rate was 32%. Four-hour anaerobic preincubation did not alter the readings of the Etest significantly. However, when the Etest was performed with 24-hr anaerobic preincubation, the number of isolates categorized as resistant was reduced to six (11%), improving the agreement rate to 91%. For measuring the metronidazole susceptibility of H. pylori by the Etest, 24-hr anaerobic preincubation is necessary to agree with the results obtained by the agar dilution test.  相似文献   
70.
Perspectives and predictions on the microbial ecology of the hyporheic zone   总被引:4,自引:0,他引:4  
1. Studies of hyporheic microbial ecology have suggested an important role for hyporheic microbial processes in stream ecosystem functioning. Using evidence from microbial communities in other aquatic habitats, some predictions are made concerning the diversity of microbial types and microbial processes likely to occur in the hyporheic zone, and the relative importance of these various types to the hyporheic ecosystem. 2. It is predicted that the biofilm growth form of interstitial micro-organisms will create a variety of microniches, allowing coexistence of a great diversity of microbial types, and promoting the activity of some otherwise poor competitors. It is further predicted that the confluence of reduced groundwaters and aerobic surface waters will favour chemolithotrophic processes in the hyporheic zone, but that these will contribute significantly to hyporheic production only if surface water is very low in dissolved organic carbon, or the groundwater is extremely reduced, such as by the influence of riparian wetlands. A variety of anaerobic respiratory pathways, such as nitrate, ferric ion, sulphate and even methanogenic respiration will be employed in the hyporheic zone, with biofilm dynamics permitting these to occur even in aerobic sediments. Anaerobic pathways may account for a significant proportion of total hyporheic organic matter mineralization. 3. The role of fungi in hyporheic dynamics is, as yet, almost completely unstudied. However, it is expected that they will be important in breaking down buried particulate organic matter (POM), which may account for a large proportion of total stream POM. 4. Physicochemical conditions in hyporheic sediments appear to be highly heterogeneous, and this heterogeneity may be very important in the cycling of certain nutrients, especially nitrogen, which involves a series of steps requiring different conditions. 5. Various new techniques are now available by which biofilm dynamics and in situ microbial processes may be measured. Studies are recommended of intact microbial communities both at the microscale of the biofilm and at the scale of the heterogeneities occurring in hyporheic sediments. Studies are needed that measure actual rates of microbial processes under in situ conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号