首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   54篇
  国内免费   138篇
  2024年   3篇
  2023年   24篇
  2022年   24篇
  2021年   27篇
  2020年   26篇
  2019年   33篇
  2018年   22篇
  2017年   25篇
  2016年   20篇
  2015年   34篇
  2014年   37篇
  2013年   75篇
  2012年   38篇
  2011年   76篇
  2010年   31篇
  2009年   63篇
  2008年   49篇
  2007年   44篇
  2006年   59篇
  2005年   50篇
  2004年   34篇
  2003年   31篇
  2002年   43篇
  2001年   36篇
  2000年   28篇
  1999年   19篇
  1998年   26篇
  1997年   28篇
  1996年   23篇
  1995年   26篇
  1994年   17篇
  1993年   26篇
  1992年   20篇
  1991年   16篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   15篇
  1985年   22篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
排序方式: 共有1230条查询结果,搜索用时 781 毫秒
71.
The feasibility of anaerobic methanethiol (MT) degradation at elevated sodium concentrations was investigated in a mesophilic (30 degrees C) lab-scale upflow anaerobic sludge bed (UASB) reactor, inoculated with estuarine sediment originating from the Wadden Sea (The Netherlands). MT was almost completely degraded (>95%) to sulfide, methane and carbon dioxide at volumetric loading rates up to 37 mmol MT x L(-1) x day(-1), 0.5 M sodium (NaCl or NaHCO(3)) and between pH 7.3 and 8.4. Batch experiments revealed that inhibition of MT degradation started at sodium (both NaCl and NaHCO(3)) concentrations exceeding 0.8 M. Sulfide inhibited MT degradation already around 3 mM (pH 8.3).  相似文献   
72.
建立了一种利用高效液相色谱法定量分析丁二酸厌氧发酵体系中多种有机酸的方法。利用Alltech反相Prevail有机酸色谱柱,以25 mmol.L-1KH2PO4(pH2.5)作为流动相,流速1 mL.min-1,采用紫外检测器,于215 nm处检测,能将丁二酸厌氧发酵体系中多种有机酸完全分离并准确定量。有机酸的回收率均在99%~103%之间。本方法能够快速、精确测定丁二酸厌氧发酵体系中多种有机酸含量,并初步应用于该发酵体系培养基成分优化方面,对于指导厌氧代谢调控生产丁二酸具有重要意义。  相似文献   
73.
The consumption of transgenic crops and their by-products has become increasingly common in the United States. Yet, uncertainty remains regarding the fate and behavior of DNA within food matrices once it exits the digestive track and enters into wastewater treatment plants (WWTPs). Because many transgenic crops have historically contained antibiotic resistance genes as selection markers, understanding the behavior and uptake of these transgenes by environmental microbes is of critical importance. To investigate the behavior of free transgenic crop DNA, thermophilic anaerobic batch reactors were amended with varying concentrations of transgenic crop genes (i.e., LUG, nptII, and bla) and the persistence of those genes was monitored over 60 days using quantitative PCR. Significant levels of nptII and bla were detected in extracellular DNA (eDNA). Furthermore, LUG maize marker genes were also detected in the control reactors, suggesting that other crop-derived transgenes contained within digested transgenic foods may also enter WWTPs. Possible bacterial transformation events were detected within the highest dose treatments at Days 30 and 60 of incubation. These findings suggest that within the average conventional digester residence times in the United States (30 days), there is a potential for bacterial transformation events to occur with crop-derived transgenes found in eDNA.  相似文献   
74.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   
75.
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass.  相似文献   
76.
Due to the recent enactment of a stricter drinking water standard for arsenate, large quantities of arsenate-laden drinking water residuals will be disposed in municipal landfills. The objective of this study was to determine the role of methanogenic consortia on the conversion of arsenate. Methanogenic conditions commonly occur in mature municipal solid waste landfills. The results indicate the rapid and facile reduction of arsenate to arsenite in methanogenic sludge. Endogenous substrates in the sludge were sufficient to support the reductive biotransformation. However the rates of arsenate reduction were stimulated by the addition of exogenous electron donating substrates, such as H2, lactate or a mixture of volatile fatty acids. A selective methanogenic inhibitor stimulated arsenate reduction in microcosms supplied with H2, suggesting that methanogens competed with arsenate reducers for the electron donor. Rates of arsenate reduction increased with arsenate concentration up to 2 mM, higher concentrations were inhibitory. The electron shuttle, anthraquinone-2,6-disulfonate, used as a model of humic quinone moieties, was shown to significantly increase rates of arsenate reduction at substoichiometric concentrations. The presence of sulfur compounds, sulfate and sulfide, did not affect the rate of arsenate transformation but lowered the yield of soluble arsenite, due to the precipitation of arsenite with sulfides. The results taken as a whole suggest that arsenate disposed into anaerobic environments may readily be converted to arsenite increasing the mobility of arsenic. The extent of the increased mobility will depend on the concentration of sulfides generated from sulfate reduction.  相似文献   
77.
Extensive manufacturing of explosives in the last century has resulted in widespread contamination of soils and waters. Decommissioning and cleanup of these materials has also led to concerns about the explosive hazards associated with residual energetics still present on the surfaces of ordnance and explosives scrap. Typically, open burning or detonation is used to decontaminate ordinance and explosive scrap. Here the use of an anaerobic microbiological system applied as a bioslurry to decontaminate energetics from the surfaces of metal scrap is described. Decontamination of model metal scrap artificially contaminated with 2,4,6-trinitrotoluene and of decommissioned mortar rounds still containing explosives residue was examined. A portable ion mobility spectrometer was employed for the detection of residual explosives residues on the surfaces of the scrap. The mixed microbial populations of the bioslurries effectively decontaminated both the scrap and the mortar rounds. Use of the ion mobility spectrometer was an extremely sensitive field screening method for assessing decontamination and is a method by which minimally trained personnel can declare scrap clean with a high level of certainty.  相似文献   
78.
Microbial consortia in a two-phase, anaerobic bioreactor using a mixture of fruit and vegetable wastes were established. Bacterial and archaeal communities obtained by a culture-independent approach based on single strand conformation polymorphism analysis of total 16S rDNA showed the adaptation of the microflora to the process parameters. Throughout the 90 d of the study, the species composition of the bacterial community changed significantly. Bacterial 16S rDNA showed at least 7 different major species with a very prominent one corresponding to a Megasphaera elsdenii whereas bacterial 16S rDNA of a methanization bioreactor showed 10 different major species. After two weeks, Prevotella ruminicola became major and its dominance increased continuously until day 50. After an acid shock at pH 5, the 16S rDNA archaeal patterns in the acidogenic reactor showed two major prominent species corresponding to Methanosphaera stadtmanii and Methanobrevibacter wolinii, a hydrogenotrophic bacterium.  相似文献   
79.
The speciation of metals plays an important role in their bioavailability. In the case of anaerobic reactors for the treatment of wastewaters, the ubiquitous presence of sulfide leads to extensive precipitation of metals like nickel and cobalt, which are essential for the metabolism of the anaerobic microorganisms that carry out the mineralization of the pollutants present in the wastewater. In practice, nickel, cobalt, and iron are added in excessive amounts to full-scale installations. This study is concerned with the complexation of nickel and cobalt with yeast extract and its effect on the biogas production by methanogenic biomass. Adsorptive stripping voltammetry (AdSV) was used to get information about the stability and complexing capacity of the metal-yeast extract complexes formed. Nickel and cobalt form relatively strong organic complexes with yeast extract. The bioavailability of these essential metals in anaerobic batch reactors was dramatically increased by the addition of yeast extract. This is due to the formation of dissolved bioavailable complexes, which favors the dissolution of metals from their sulfides. Trace doses of yeast extract may be effective in keeping additions of essential metals to anaerobic reactors at a minimum.  相似文献   
80.
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号