首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   1篇
  61篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2002年   2篇
  2001年   1篇
  1999年   4篇
  1998年   3篇
  1994年   1篇
  1993年   2篇
  1989年   1篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
31.
Some saligenin cyclic phosphorus esters react in a mild condition with mercaptans including cysteine to yield S-salicyl thioethers. The reactivity is in the following order, which is parallel with hydrolysis rate: Phosphorothiolates > phosphates > phosphorothionates. ‘SH enzymes’ such as papain and yeast alcohol dehydrogenase were inhibited by the cyclic esters reactable with SH group. There is an interesting correlation among the alkylating activity, the inhibitory activity against ‘SH enzymes’ and the antifungal activity of the cyclic esters. A reaction mechanism is proposed and the high activity of phosphorothiolates is discussed on the basis of the data from infrared and mass spectra.  相似文献   
32.
The V max of an extracellular, thermostable -amylase from Bacillus licheniformis 44MB82 were 5.70×10-3 and 9.70×10-3 mM s-1 at 30 and 90°C, respectively, whereas the K m values were similar (0.9 mg ml-1) at both temperatures. Excluding dextrins, the dominant products from soluble starch and amylopectin hydrolysis contained less than six glucose residues. The enzyme hydrolysed amylopectin better than soluble starch. Increasing the temperature from 30 to 90°C was accompanied by an increase in the production of malto-oligosaccharides, especially maltotetrose, and this was related to the secondary hydrolysis of maltopentose and maltohexose.The authors are with the Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113. 26 Academician G. Bonchev, Bulgaria  相似文献   
33.
To elucidate the relationship between the substrate size and geometric shape of the catalytic site of Thermus maltogenic amylase, Gly50, Asp109, and Val431, located at the interface of the dimer, were replaced with bulky amino acids. The k cat/K m value of the mutant for amylose increased significantly, whereas that for amylopectin decreased as compared to that of the wild-type enzyme. Thus, the substituted bulky amino acid residues modified the shape of the catalytic site, such that the ability of the enzyme to distinguish between small and large molecules like amylose and amylopectin was enhanced.  相似文献   
34.
A genetic strategy generating wheat with very high amylose content   总被引:1,自引:0,他引:1       下载免费PDF全文
Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down‐regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.  相似文献   
35.
36.
α-Amylases are endo-acting retaining enzymes of glycoside hydrolase family 13 with a catalytic (β/α)8-domain containing an inserted loop referred to as domain B and a C-terminal anti-parallel β-sheet termed domain C. New insights integrate the roles of Ca2?+?, different substrates, and proteinaceous inhibitors for α-amylases. Isozyme specific effects of Ca2?+? on the 80% sequence identical barley α-amylases AMY1 and AMY2 are not obvious from the two crystal structures, containing three superimposable Ca2?+? with identical ligands. A fully hydrated fourth Ca2?+? at the interface of the AMY2/barley α-amylase/subtilisin inhibitor (BASI) complex interacts with catalytic groups in AMY2, and Ca2?+? occupies an identical position in AMY1 with thiomaltotetraose bound at two surface sites. EDTA-treatment, DSC, and activity assays indicate that AMY1 has the highest affinity for Ca2?+?. Subsite mapping has revealed that AMY1 has ten functional subsites which can be modified by means protein engineering to modulate the substrate specificity. Other mutational analyses show that surface carbohydrate binding sites are critical for interaction with polysaccharides. The conserved Tyr380 in the newly discovered ‘sugar tongs’ site in domain C of AMY1 is thus critical for binding to starch granules. Furthermore, mutations of binding sites mostly reduced the degree of multiple attack in amylose hydrolysis. AMY1 has higher substrate affinity than AMY2, but isozyme chimeras with AMY2 domain C and other regions from AMY1 have higher substrate affinity than both parent isozymes. The latest revelations addressing various structural and functional aspects that govern the mode of action of barley α-amylases are reported in this review.  相似文献   
37.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   
38.
39.
Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen–deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain–mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.  相似文献   
40.
All plants and green algae synthesize starch through the action of the same five classes of elongation enzymes: the starch synthases. Arabidopsis mutants defective for the synthesis of the soluble starch synthase IV (SSIV) type of elongation enzyme have now been characterized. The mutant plants displayed a severe growth defect but nonetheless accumulated near to normal levels of polysaccharide storage. Detailed structural analysis has failed to yield any change in starch granule structure. However, the number of granules per plastid has dramatically decreased leading to a large increase in their size. These results, which distinguish the SSIV mutants from all other mutants reported to date, suggest a specific function of this enzyme class in the control of granule numbers. We speculate therefore that SSIV could be selectively involved in the priming of starch granule formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号