首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   10篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1994年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
31.
The unconventional viruses of the transmissible subacute spongiform encephalopathies (kuru-CJD-GSS-FFI-scrapie-BSE) are nucleants spontaneously generated from host precursor proteins altered to β-pleated sheet configuration that polymerize into insoluble infectious amyloid fibrils. Thede novo conversion to infectious amyloids is facilitated or accelerated by many different point mutations causing amino acid changes, a stop codon, or octapeptide inserts that increase the likelihood of spontaneous conversion to infectious configuration by many orders of magnitude. Similar nucleating induction of configurational change to amyloid probably occurs in other amyloidoses of brain and in systemic amyloidoses. Thus, all amyloids, particularly so-called fibrillar amyloid enhancing factors, may be considered to be infectious scrapie-like agents. These events probably occur extracellularly, thus we are attempting to reproduce them in vitro, even from synthetic polypeptides.  相似文献   
32.
Introduction: The aberrant or misfolded forms of the prion protein have been described as the causative agents of rare transmissible spongiform encephalopathies. In addition, proteins associated with frequently occurring neurodegenerative disorders, such as Alzheimer’s and Parkinson’s, are shown to share prion-like properties and to spread the disease in the brain.

Areas covered: Interest in the prion phenomenon has crystallized in a series of computational methods aimed at uncovering prion-like proteins at the proteome level. These programs rely on the identification of sequence signatures similar to those of yeast prions, whose structural conversion is driven by specific domains enriched in glutamine/asparagine residues. A myriad of prion-like candidates, similar to those in yeast, are predicted to exist in organisms across all kingdoms of life. We review here the role of prions, prionoids and prion-like proteins in health and disease, with a special focus on the algorithms and databases developed for their prediction and classification.

Expert commentary: Computational approaches provide novel insights into prion-like protein functions, their regulation and their role in disease.  相似文献   

33.
The identification of intermediate states for folding and aggregation is important from a fundamental standpoint and for the design of novel therapeutic strategies targeted at conformational disorders. Protein human β2‐microglobulin (HB2m) is classically associated with dialysis‐related amyloidosis, but the single point mutant D76N was recently identified as the causative agent of a hereditary systemic amyloidosis affecting visceral organs. Here, we use D76N as a model system to explore the early stage of the aggregation mechanism of HB2m by means of an integrative approach framed on molecular simulations. Discrete molecular dynamics simulations of a structured‐based model predict the existence of two intermediate states populating the folding landscape. The intermediate I1 features an unstructured C‐terminus, while I2, which is exclusively populated by the mutant, exhibits two unstructured termini. Docking simulations indicate that I2 is the key species for aggregation at acidic and physiological pH contributing to rationalize the higher amyloidogenic potential of D76N relative to the wild‐type protein and the ΔN6 variant. The analysis carried out here recapitulates the importance of the DE‐loop in HB2m self‐association at a neutral pH and predicts a leading role of the C‐terminus and the adjacent G‐strand in the dimerization process under acidic conditions. The identification of aggregation hot‐spots is in line with experimental results that support the importance of Phe56, Asp59, Trp60, Phe62, Tyr63, and Tyr66 in HB2m amyloidogenesis. We further predict the involvement of new residues such as Lys94 and Trp95 in the aggregation process.  相似文献   
34.
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds.  相似文献   
35.
Protegrin‐4 (PG‐4) is a member of the porcine leukocyte protegrins family of cysteine‐rich antimicrobial peptides (AMPs) isolated from Sus scrofa. It consists of 18 amino acid residues and works as a part of innate immune system. In this study, we examined the intrinsic aggregation propensity of this AMP using multiple computational algorithms, namely, TANGO, AGGRESCAN, FOLDAMYLOID, AMYLPRED, and ZYGGREGATOR, and found that the peptide is predicted to have a high propensity for the β sheet formation that disposes this peptide to be amyloidogenic. Under in vitro conditions, PG‐4 formed visible aggregates and displayed the hallmark properties of typical amyloids such as enhanced binding of Congo red, increased fluorescence with Thioflavin‐T, and fibrillar morphology under transmission electron microscopy. Then we examined its antimicrobial activity against Bacillus subtilis and found that the aggregated peptide retained its antimicrobial activity. Additionally, the aggregates remain non‐toxic to the HEK293 and Caco2 cells. Our study suggests that the inherent aggregation properties of AMP can rationally be explored as a potential source of peptide‐based antimicrobials with enhanced stability.  相似文献   
36.
《朊病毒》2013,7(5-6):266-272
ABSTRACT

Protein misfolding and aggregation into highly ordered fibrillar structures have been traditionally associated with pathological processes. Nevertheless, nature has taken advantage of the particular properties of amyloids for functional purposes, like in the protection of organisms against environmental changing conditions. Over the last decades, these fibrillar structures have inspired the design of new nanomaterials with intriguing applications in biomedicine and nanotechnology such as tissue engineering, drug delivery, adhesive materials, biodegradable nanocomposites, nanowires or biosensors. Prion and prion-like proteins, which are considered a subclass of amyloids, are becoming ideal candidates for the design of new and tunable nanomaterials. In this review, we discuss the particular properties of this kind of proteins, and the current advances on the design of new materials based on prion sequences.  相似文献   
37.
A new class of viral mammalian Slow Progressive Hidden INfections of variable (X) latency (“SPHINX”) DNAs, represented by the 1.8 and 2.4 kb nuclease-protected circular elements, were discovered in highly infectious cytoplasmic particles isolated from Creutzfeldt-Jakob Disease (CJD) and scrapie samples. These DNAs contained replication initiation sequences (REPs) with approximately 70% homology to those of environmental Acinetobacter phage. Antibodies against REP peptides from the 1.8 kb DNA highlighted a 41 kDa protein (spx) on Western blots, and in situ studies previously revealed its peripheral tissue expression, for example, in pancreatic islet cells, keratinocytes, kidney tubules, and oocytes but not pancreatic exocrine cells, alveoli, and striated muscle. To determine if spx concentrated in specific neurons and synapses, and also maintained a conserved pattern of architectural organization in mammalian brains, we evaluated mouse, rat, hamster, guinea pig (GP), and human samples. Most outstanding was the cross-species concentration of spx in huge excitatory synapses of mossy fibers and small internal granule neuron synapses, the only excitatory neuron within the cerebellum. Spx also localized to excitatory glutamate type synapses in the hippocampus, and both cerebellar and hippocampal synaptic spx was demonstrable ultrastructurally. Studies of two well-characterized models of sporadic CJD (sCJD) revealed novel spx pathology. Vacuolar loss of cerebellar synaptic complexes, thinning of the internal granule cell layer, and fibrillar spx accumulations within Purkinje neurons were prominent in sCJD GP brains. In rats, comparable spx fibrillar changes appeared in hippocampal pyramidal neurons, and they preceded prion protein misfolding. Hence, spx is an integral player in progressive neurodegeneration. The evolutionary origin, spread, and neuropathology of SPHINX 1.8 REP sequences opens another unanticipated chapter for mammalian symbiotic interactions with environmental microbes.  相似文献   
38.
《朊病毒》2013,7(3):200-206
ABSTRACT

Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.  相似文献   
39.
Functional bacterial amyloids (FuBA) are intrinsically disordered proteins (IDPs) which rapidly and efficiently aggregate, forming extremely stable fibrils. The conversion from IDP to amyloid is evolutionarily optimized and likely couples folding to association. Many FuBA contain several imperfect repeat sequences which contribute to the stability of mature FuBA fibrils. Aggregation can be considered an intermolecular extension of the process of intramolecular protein folding which has traditionally been studied using chemical denaturants. Here we employ denaturants to investigate folding steps during fibrillation of CsgA and FapC. We quantify protein compactification (i.e. the extent of burial of otherwise exposed surface area upon association of proteins) during different stages of fibrillation based on the dependence of fibrillation rate constants on the denaturant concentration (m-values) determined from fibrillation curves. For both proteins, urea mainly affects nucleation and elongation (not fragmentation), consistent with the fact that these steps involve both intra- and intermolecular association. The two steps have similar m-values, indicating that activation steps in nucleation and elongation involve the same level of folding. Surprisingly, deletion of two or three repeats from FapC leads to larger m-values (i.e. higher compactification) during the activation step of fibril growth. This observation is extended by SAXS analysis of the fibrils which indicates that weakening of the amyloidogenic core caused by repeat deletions causes a larger portion of normally unstructured regions of the protein to be included into the amyloid backbone. We conclude that the sensitivity of fibrillation to denaturants can provide useful insight into molecular mechanisms of aggregation.  相似文献   
40.
The gross morphological features of the eggs and eggshells (chorions) of two Lepidoptera species, Pericallia ricini and Ariadne merione were revealed for the first time by scanning and transmission electron microscopy. These two insect pests are extremely serious threats for many crops, mainly in India, but also in several other regions of the world. Micro-Raman and ATR FT-IR spectroscopy were also applied to study in detail the secondary structure of the eggshell (chorion) proteins of these Lepidoptera species. Both techniques indicate that the two species have nearly identical conformations of their chorion proteins with abundant antiparallel β-pleated sheet. These results are in support of our previous findings that the helicoidal architecture of the proteinaceous chorion of Lepidoptera and fishes is dictated by a common molecular denominator, the antiparallel β-pleated sheet secondary structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号