首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1938篇
  免费   190篇
  国内免费   16篇
  2024年   3篇
  2023年   27篇
  2022年   55篇
  2021年   74篇
  2020年   51篇
  2019年   63篇
  2018年   89篇
  2017年   82篇
  2016年   73篇
  2015年   87篇
  2014年   106篇
  2013年   183篇
  2012年   106篇
  2011年   116篇
  2010年   122篇
  2009年   110篇
  2008年   98篇
  2007年   100篇
  2006年   97篇
  2005年   96篇
  2004年   97篇
  2003年   80篇
  2002年   58篇
  2001年   48篇
  2000年   25篇
  1999年   13篇
  1998年   15篇
  1997年   9篇
  1996年   6篇
  1995年   9篇
  1994年   10篇
  1993年   7篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有2144条查询结果,搜索用时 468 毫秒
41.
The misfolding of human islet amyloid polypeptide (hIAPP) is regarded as one of the causative factors of type 2 diabetes mellitus (T2DM). Salvia miltiorrhiza (Danshen), one of the most commonly used of traditional Chinese medicines, is often used in Compound Recipes for treating diabetes, however with unclear mechanisms. Since salvianolic acid B (SalB) is the most abundant bioactive ingredient of salvia miltiorrhiza water‐extract. In this study, we tested whether SalB has any effect on the amyloidogenicity of hIAPP. Our results clearly suggest that SalB can significantly inhibit the formation of hIAPP amyloid and disaggregate hIAPP fibrils. Furthermore, photo‐crosslinking based oligomerization studies suggest SalB significantly suppresses the toxic oligomerization of hIAPP monomers. Cytotoxicity protection effects on pancreatic INS‐1 cells by SalB were also observed using MTT‐based assays, potentially due to the inhibition on the membrane disruption effects and attenuated mitochondria impairment induced by hIAPP. These results provide evidence that SalB may further be studied on the possible pharmacological treatment for T2DM. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
42.
p53 is a key protein that participates in cell-cycle control, and its malfunction can lead to cancer. This tumour suppressor protein has three main domains; the N-terminal transactivation domain, the CTD (C-terminal domain) and the core domain (p53C) that constitutes the sequence-specific DBD (DNA-binding region). Most p53 mutations related to cancer development are found in the DBD. Aggregation of p53 into amyloid oligomers and fibrils has been shown. Moreover, amyloid aggregates of both the mutant and WT (wild-type) forms of p53 were detected in tumour tissues. We propose that if p53 aggregation occurred, it would be a crucial aspect of cancer development, as p53 would lose its WT functions in an aggregated state. Mutant p53 can also exert a dominant-negative regulatory effect on WT p53. Herein, we discuss the dominant-negative effect in light of p53 aggregation and the fact that amyloid-like mutant p53 can convert WT p53 into more aggregated species, leading into gain of function in addition to the loss of tumour suppressor function. In summary, the results obtained in the last decade indicate that cancer may have characteristics in common with amyloidogenic and prion diseases.  相似文献   
43.
Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer‐like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2‐week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy‐induced memory deficits, enhance long‐term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up‐regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy‐induced tau hyperphosphorylation at multiple AD‐related sites through activation protein phosphatase‐2A (PP2A) with decreased inhibitory demethylated PP2AC at Leu309 and phosphorylated PP2AC at Tyr307. In addition, supplementation of betaine also decreased Aβ production with decreased presenilin‐1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy‐induced AD‐like pathological changes and memory deficits.  相似文献   
44.
45.
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates.  相似文献   
46.
Given that amyloid‐β 42 (Aβ42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aβ42 production should be a potential therapeutic approach. γ‐Secretase modulators (GSMs) cause selective reduction of Aβ42 or both reduction of Aβ42 and Aβ40 without affecting total Aβ through shifting the γ‐cleavage position in amyloid precursor protein. We recently reported on GSM‐2, one of the second‐generation GSMs, that selectively reduced brain Aβ42 level and significantly ameliorated cognitive deficits in plaque‐free 5.5‐month‐old Tg2576 AD model mice. Here, we investigated the effects of GSM‐2 on 10‐, 14‐, and 18‐month‐old mice which had age‐dependent increase in amyloid plaques. Eight‐day treatment with GSM‐2 significantly ameliorated cognitive deficits measured by Y‐maze task in the mice of any age. However, GSM‐2 reduced brain soluble Aβ42 only in 10‐month‐old mice. In contrast, GSM‐2 markedly reduced newly synthesized soluble Aβ42 in both 10‐ and 18‐month‐old mice with similar efficacy when measured using the stable isotope‐labeling technique, suggesting that nascent Aβ42 plays a more significant role than plaque‐associated soluble Aβ42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aβ42 synthesis in AD therapeutic regimens.  相似文献   
47.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   

48.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized pathologically by the abnormal deposition of extracellular amyloid-β (Aβ) oligomers. However, the nature and precise mechanism of the toxicity of Aβ oligomers are not clearly understood. Aβ oligomers have been previously shown to cause a major loss of EphB2, a member of the EphB family of receptor tyrosine kinases. To determine the effect of EphB2 on Aβ oligomer-induced neurotoxicity and the underlying molecular mechanisms, we examined the EphB2 gene in cultured hippocampal neurons. Using a cellular model of AD, Aβ1–42 oligomers were confirmed to induce neurotoxicity in a time-dependent manner and result in a major decrease of EphB2. EphB2 overexpression could prevent the neurotoxicity of hippocampal neurons from exposure to Aβ1–42 oligomers for 1 h. Further analysis revealed that EphB2 overexpression increased synaptic NR1 and NR2B expression in Aβ1–42 oligomer-treated neurons. Moreover, EphB2 overexpression prevented Aβ1–42 oligomer-induced downregulation of dephosphorylated p38 MAPK and phosphorylated CREB. Together, these results suggest that EphB2 is a factor which protects hippocampal neurons against the toxicity of Aβ1–42 oligomers, and we infer that the protection of EphB2 is achieved by increasing the synaptic NMDA receptor level and downstream p38 MAPK and CREB signaling in hippocampal neurons. This study provides new molecular insights into the neuroprotective effect of EphB2 and highlights its potential therapeutic role in the management of AD.  相似文献   
49.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   
50.
The aggregates of amyloid beta peptides (Aβs) are regarded as one of the main pathological hallmarks of Alzheimer’s disease (AD). An imbalance between the rates of synthesis and clearance of Aβs is considered to be a possible cause for the onset of AD. Dipeptidyl peptidases II and IV (DPPII and DPPIV) are serine proteases removing N-terminal dipeptides from polypeptides and proteins with proline or alanine on the penultimate position. Alanine is an N-terminal penultimate residue in Аβs, and we presumed that DPPII and DPPIV could cleave them. The results of present in vitro research demonstrate for the first time the ability of DPPIV to truncate the commercial Aβ40 and Aβ42 peptides, to hinder the fibril formation by them and to participate in the disaggregation of preformed fibrils of these peptides. The increase of absorbance at 334 nm due to complex formation between primary amines with o-phtalaldehyde was used to show cleaving of Aβ40 and Aβ42. The time-dependent increase of the quantity of primary amines during incubation of peptides in the presence of DPPIV suggested their truncation by DPPIV, but not by DPPII. The parameters of the enzymatic breakdown by DPPIV were determined for Aβ40 (Km = 37.5 μM, kcat/Km = 1.7 × 103 M−1sec−1) and Aβ42 (Km = 138.4 μM, kcat/Km = 1.90 × 102 M−1sec−1). The aggregation-disaggregation of peptides was controlled by visualization on transmission electron microscope and by Thioflavin-T fluorescence on spectrofluorimeter and fluorescent microscope. DPPIV hindered the peptide aggregation/fibrillation during 3-4 days incubation in 20 mM phosphate buffer, pH 7.4, 37 °C by 50–80%. Ovalbumin, BSA and DPPII did not show this effect. In the presence of DPPIV, the preformed fibrils were disaggregated by 30–40%. Conclusion: for the first time it was shown that the Aβ40 and Aβ42 are substrates of DPPIV. DPPIV prohibits the fibrillation of peptides and promotes disaggregation of their preformed aggregates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号