首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  国内免费   1篇
  37篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
排序方式: 共有37条查询结果,搜索用时 187 毫秒
31.
32.
33.
34.
Graviportal taxa show an allometric increase of the cross‐sectional area of supportive bones and are assumed to display microanatomical changes associated with an increase in bone mass. This evokes osteosclerosis (i.e. an increase in bone compactness observed in some aquatic amniotes). The present study investigates the changes in bones' microanatomical organization associated with graviportality and how comparable they are with aquatically acquired osteosclerosis aiming to better understand the adaptation of bone to the different associated functional requirements. Bones of graviportal taxa show microanatomical changes that are not solely attributable to allometry. They display a thicker cortex and a proportionally smaller medullary cavity, with a wider transition zone between these domains. This inner cancellous structure may enable to better enhance energy absorption and marrow support. Moreover, the cross‐sectional geometric parameters indicate increased resistance to stresses engendered by bending and torsion, as well as compression. Adaptation to a graviportal posture should be taken into consideration when analyzing possibly amphibious taxa with a terrestrial‐like morphology. This is particularly important for palaeoecological inferences about large extinct tetrapods that might have been amphibious and, more generally, for the study of early stages of adaptation to an aquatic life in amniotes.  相似文献   
35.
1. Analysis of the distribution and abundance of water plants can be a useful tool for determining the ecological water requirements of sites in a catchment. 2. Seed‐bank and vegetation surveys of wetland and riparian sites were undertaken in the Angas River catchment in South Australia to determine the distribution and abundance of plants associated with riparian habitats. Plant species were allocated to water plant functional groups (WPFGs sensu Brock and Casanova, Frontiers in Ecology; Building the Links, 1997, Elsevier Science). In addition to the seven functional groups already recognised, three new groups containing submerged and woody growth forms were included in this study. 3. Cluster analysis of sites on the basis of species presence/absence was compared with site clustering obtained from analysis of representation of WPFGs. Functional group analysis provided a similar segregation of species‐poor sites to that resulting from analysis of species presence/absence, but provided better resolution of clusters for species‐rich sites. Three clusters of species‐rich sites were delineated: riparian sites that require year‐round permanent water but have fluctuating water levels, spatially and temporally variable riparian sites with shrubs and trees and temporary wetlands that dry annually. 4. Segregation of sites on the basis of functional group representation can provide information to managers about the water requirements of suites of species in different parts of the catchment. Knowledge of the environmental water requirements of sites within a catchment can help managers to prioritise water management options and delivery within that catchment.  相似文献   
36.
Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious working environments. In the complex amphibious environment, amphibious robots should possess multi-capabilities to walk on rough ground, maneuver underwater, and pass through transitional zones such as sandy and muddy terrain. These capabilities require a high-performance propulsion mechanism for the robots. To tackle a complex task, a novel amphibious robot (AmphiHex-I) with,transformable fin-leg composite propulsion mechanisms is developed. With the fin-leg composite propulsions, AmphiHex-I can walk on rough and soft substrates and swim in water with many maneuvers. This paper presents the structural design of the transformable fin-leg propulsion mechanism and its driving module. A hybrid model is used to explore the dynamics between the trans- formable legs and transitional environment such as granular medium. The locomotion performances of legs with various ellip- tical shapes are analyzed, which is verified by the coincidence between the model predictions and the simulation results. Further, an orthogonal experiment is conducted to study the locomotion performance of a two-legged platform walking with an asyn- chronous gait in the sandy and muddy terrain. Finally, initial experiments of AmphiHex-I walking on various lands and swimming in water are implemented. These results verify that the transformable fin-leg mechanisms enable the amphibious robot to pass through a complex, amphibious working environment.  相似文献   
37.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号