首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5456篇
  免费   248篇
  国内免费   218篇
  2023年   42篇
  2022年   59篇
  2021年   87篇
  2020年   85篇
  2019年   130篇
  2018年   165篇
  2017年   104篇
  2016年   102篇
  2015年   96篇
  2014年   254篇
  2013年   312篇
  2012年   192篇
  2011年   285篇
  2010年   201篇
  2009年   212篇
  2008年   249篇
  2007年   239篇
  2006年   229篇
  2005年   219篇
  2004年   169篇
  2003年   160篇
  2002年   144篇
  2001年   129篇
  2000年   107篇
  1999年   104篇
  1998年   104篇
  1997年   81篇
  1996年   93篇
  1995年   69篇
  1994年   90篇
  1993年   94篇
  1992年   92篇
  1991年   88篇
  1990年   90篇
  1989年   68篇
  1988年   62篇
  1987年   72篇
  1986年   41篇
  1985年   73篇
  1984年   119篇
  1983年   80篇
  1982年   93篇
  1981年   78篇
  1980年   74篇
  1979年   69篇
  1978年   42篇
  1977年   50篇
  1976年   37篇
  1975年   30篇
  1974年   25篇
排序方式: 共有5922条查询结果,搜索用时 468 毫秒
111.
Although the sensitivity of the plasma membrane H+-ATPase to vanadate is well known, the metabolic response of plant cells to vanadate is less well characterised in vivo and its use as an inhibitor in whole plant experiments has had mixed success. Experiments with maize (Zea mays, L.) roots and with purified plasma membrane fractions from the same tissues showed that exposure to vanadate caused: (i) a reduction in the capacity for phosphate uptake; (ii) a reduction in the extractable ATPase activity from the tissue; and (iii) a significant increase in the ATP level. The measurements on the extractable ATPase activity and the ATP level showed that the effect of vanadate developed slowly, apparently reflecting the slow accumulation of intracellular vanadate. The marked effect of vanadate on the ATP level-exposure to 500 M vanadate for 5 h doubled the ATP content of the roots tips-indicates that there is no stringent control over the ATP level in the roots and that the plasma membrane H+-ATPase activity is likely to have a significant role in determining the ATP level under normal conditions.  相似文献   
112.
The effect of shock-loading of zinc, copper and cadmium ions on the removal of total organic carbon (TOC) and phosphate in an anaerobic-aerobic activated sludge process was investigated. TOC removal was not sensitive to shock-loading of Zn2+ and Cd2+ ions, and complete removal was achieved even at 20 mg Zn2+/l and 20 mg Cd2+/l. However, with over 1 mg Cu2+/1 TOC removal efficiency decreased. PO inf4 sup3- removal, in contrast, was extremely sensitive to these metal ions, with the threshold being 1 mg Zn2+/l and 1 mg Cd2+/l. Higher concentrations adversely affected PO inf4 sup3- removal. Copper again proved detrimental; no PO inf4 sup3- removal was achieved even at 1 mg Cu/l. These results highlight the sensitivity of the removal efficiencies of TOC and PO inf4 sup3- to shock loadings of these heavy metals.Y.P. Ting is with the Department of Chemical Engineering, National University of Singapore, Kent Ridge, 0511, Singapore; H. Imai and S. Kinoshita are with the Department of Chemical Process Engineering, Hokkaido University, Sapporo 060, Japan.  相似文献   
113.
A multiple sequence alignment among aspartate aminotransferase, dialkylglycine decarboxylase, and serine hydroxymethyltransferase (DAS) was used for profile databank search. The DAS profile could detect similarities to other pyridoxal or pyridoxamine phosphate-dependent enzymes, like several gene products involved in dideoxysugar and deoxyaminosugar synthesis. The alignment among DAS and such gene products shows the conservation of aspartate 222 and lysine 258, which, in aspartate aminotransferase, interacts with the N1 of the coenzyme pyridine ring and forms the internal Schiff base, respectively. The lysine is replaced by histidine in the pyridoxamine phosphate-dependent gene products. The alignment indicates also that the region encompassing the coenzyme binding site is the most conserved.  相似文献   
114.
Calvin cycle genes in Nitrobacter vulgaris T3   总被引:1,自引:0,他引:1  
Abstract The genes encoding the Calvin cycle enzymes of Nitrobacter vulgaris T3 are found as two separate clusters on the chromosome. One cluster contains the genes for the large and small subunits of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), glyceraldehyde-3-phosphate dehydrogenase, and one encoding a regulatory protein of the LysR family. The other cluster contains the genes for fructose-1,6-/sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, and fructose-1,6-/sedoheptulose-1,7-biphosphate aldolase. With the exception of the LysR-like gene, the genes in each cluster are apparently transcribed in the same direction. The deduced amino acid sequence of both the large and small subunits of RuBisCO are most similar (84–86%) to those of Thiobacillus ferrooxidans and Chromatium vinosum . The deduced sequences of phosphoribulokinase and fructose/sedoheptulose bisphosphatase are 67–73 aand 44–46% similar to those reported for other autotrophic bacteria, respectively.  相似文献   
115.
A flow injection anlytical system based on a gas diffusion membrane module for ammonia and an ammonium flow-through potentiometric detector has been set up for measurement of L-glutamine and ammonium ions in hybridoma cell cultures. The main feature of the system is that the same basic analytical concept and equipment is used in both measurements, the only difference being for the determination of L-glutamine, in which the sample flows through an immobilized glutaminase cartridge. The conditions to enable the performance of both analysis consecutively, avoiding potential interferences by unwanted deamination of other compounds in the samples, have been determined. Finally, the proposed system has been compared with reference analytical methods for batch hybridoma cell culture experiments.  相似文献   
116.
In sesquioxide-rich soils of tropical and subtropical areas and volcanic-ash soils with high levels of active Al(Fe), large amounts of phosphate fertilizers are needed to overcome their high P-fixation capacity (quenching strategy). A greenhouse pot experiment has been used to evaluate the effectiveness of city refuse compost (CRC) as a P-source for these variable-charge soils, compared to inorganic P. Mature CRC and K2HPO4 were applied at rates equivalent to 125, 250, 375, 500 and 625 kg P ha–1 to a ferrallitic soils from Tenerife Island (Andeptic Paleudult) with a high content in active Al+Fe (4.82%) and a high P-fixation capacity (87%). Perennial ryegrass (Lolium perenne L.) was grown in pots and plants were harvested at regular intervals after seedling emergence. CRC increases plant P concentration and soil labile-P proportional to the applied rate. The best results were obtained from a compost application of 30 t ha–1 equivalent-rate, after a residence time of at least three months. An important residual effect in the supply capacity of P in relation to the phosphate fertilizer was also observed. The relative agronomic effectiveness (RAE) in comparison to K2HPO4 was 66% after 6 months, considering P uptake + soil labile-P. The soil P-fixation capacity was significantly reduced from a compost application of 40 t ha–1 equivalent-rate. Competition in adsorption between organic ligands and phosphate, in combination with net mineralization of organic P in compost, might account for the high RAE value obtained. The main conclusion is that the city refuse compost could be a suitable P-amendment for resquioxic soils due to its high RAE, and the residual effect on P-supply. ei]H. Lambers  相似文献   
117.
Inhibition of nitrate uptake by aluminium in maize   总被引:1,自引:0,他引:1  
Experiments with two maize (Zea mays L.) hybrids were conducted to determine (a) if the inhibition of nitrate uptake by aluminium involved a restriction in the induction (synthesis/assemblage) of nitrate transporters, and (b) if the magnitude of the inhibition was affected by the concurrent presence of ambient ammonium. At pH 4.5, the rate of nitrate uptake from 240 μM NH4NO3 was maximally inhibited by 100 μM aluminium, but there was little measurable effect on the rate of ammonium uptake. Presence of ambient aluminium did not eliminate the characteristic induction pattern of nitrate uptake upon first exposure of nitrogen-depleted seedlings to that ion. Removal of ambient aluminium after six hours of induction resulted in recovery within 30 minutes to rates of nitrate uptake that were similar to those of plants induced in absence of aluminium. Addition of aluminium to plants that had been induced in absence of aluminium rapidly restricted the rate of nitrate uptake to the level of plants that had been induced in the presence of aluminium. The data are interpreted as indicating that aluminium inhibited the activity of nitrate transporters to a greater extent than the induction of those transporters. When aluminium was added at initiation of induction, the effect of ambient ammonium on development of the inhibition by aluminium differed between the two hybrids. The responses indicate a complex interaction between the aluminium and ammonium components of high acidity soils in their influence on nitrate uptake. ei]{gnA C}{fnBorstlap}  相似文献   
118.
The long-term effects of biological agents alone and in combination with monoammonium phosphate on tree growth and fruit production of apple trees planted on apple replant soil was studied for five years. Application of monoammonium phosphate (MAP) in the year of planting increased shoot growth, cross-sectional trunk area and fruit yield of McIntosh on M.26 rootstock for the first two years. The application of bacterial agents alone were not effective in increasing young tree growth except BACT-1 in 1987. None of the bacterial agents increased fruit yield when applied alone. The addition of certain bacterial agents to MAP application increased young tree growth in various years. The combination of bacterial agent B-10 and MAP reduced young tree growth and yield compared with the MAP treatment alone. These results suggest that the application of MAP alone may be sufficient to alleviate the replant problem and the addition of BACT-1, EBW-4 or B8 bacterial agents to this treatment may be beneficial to increase tree growth in some years. Contribution number 822. Contribution number 822.  相似文献   
119.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φe), the in vivo quantum yield of PSII photochemistry (φPSII) and the photochemical quenching co-efficient (qP), and increased the non-photochemical quenching co-efficient (qN) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φPSII and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.  相似文献   
120.
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression inEscherichia coli of a chimera protein involving Pic and ATP synthase subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号