首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2325篇
  免费   92篇
  国内免费   137篇
  2023年   23篇
  2022年   26篇
  2021年   28篇
  2020年   44篇
  2019年   55篇
  2018年   56篇
  2017年   43篇
  2016年   44篇
  2015年   38篇
  2014年   64篇
  2013年   138篇
  2012年   63篇
  2011年   122篇
  2010年   76篇
  2009年   87篇
  2008年   80篇
  2007年   108篇
  2006年   101篇
  2005年   100篇
  2004年   79篇
  2003年   80篇
  2002年   67篇
  2001年   62篇
  2000年   60篇
  1999年   63篇
  1998年   49篇
  1997年   36篇
  1996年   47篇
  1995年   32篇
  1994年   55篇
  1993年   42篇
  1992年   42篇
  1991年   38篇
  1990年   41篇
  1989年   42篇
  1988年   23篇
  1987年   34篇
  1986年   21篇
  1985年   47篇
  1984年   52篇
  1983年   24篇
  1982年   29篇
  1981年   26篇
  1980年   34篇
  1979年   27篇
  1978年   20篇
  1977年   26篇
  1976年   17篇
  1974年   12篇
  1973年   13篇
排序方式: 共有2554条查询结果,搜索用时 125 毫秒
141.
The study presents a mechanistic model for the evaluation of glucose utilization by Escherichia coli under aerobic and mesophilic growth conditions. In the first step, the experimental data was derived from batch respirometric experiments conducted at 37 degrees C, using two different initial substrate to microorganism (S(0)/X(0)) ratios of 15.0 and 1.3 mgCOD/mgSS. Acetate generation, glycogen formation and oxygen uptake rate profile were monitored together with glucose uptake and biomass increase throughout the experiments. The oxygen uptake rate (OUR) exhibited a typical profile accounting for growth on glucose, acetate and glycogen. No acetate formation (overflow) was detected at low initial S(0)/X(0) ratio. In the second step, the effect of culture history developed under long-term growth limiting conditions on the kinetics of glucose utilization by the same culture was evaluated in a sequencing batch reactor (SBR). The system was operated at cyclic steady state with a constant mean cell residence time of 5 days. The kinetic response of E.coli culture was followed by similar measurements within a complete cycle. Model calibration for the SBR system showed that E. coli culture regulated its growth metabolism by decreasing the maximum growth rate (lower microH) together with an increase of substrate affinity (lower K(S)) as compared to uncontrolled growth conditions. The continuous low rate operation of SBR system induced a significant biochemical substrate storage capability as glycogen in parallel to growth, which persisted throughout the operation. The acetate overflow was observed again as an important mechanism to be accounted for in the evaluation of process kinetics.  相似文献   
142.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   
143.
Chung YS  Kim DH  Seo WM  Lee HC  Liou K  Oh TJ  Sohng JK 《Carbohydrate research》2007,342(11):1412-1418
Over-expressed GerB (dTDP-4-keto-6-deoxy-d-glucose aminotransferase) of Streptomyces sp. GERI-155 was used in the enzymatic synthesis of dTDP-4-amino-4,6-dideoxy-D-glucose (2) from dTDP-4-keto-6-deoxy-D-glucose (1). [Carbohydrate structure: see text]. Five enzymes including dTMP kinase (TMK), acetate kinase (ACK), dTDP-glucose synthase (TGS), dTDP-glucose 4,6-dehydratase (DH), and dTDP-4-keto-6-deoxy-d-glucose aminotransferase (GerB) were used to synthesize 2 on a large scale from glucose-1-phosphate and TMP. A conversion yield of up to 57% was obtained by HPLC peak integration given a reaction time of 270min. After purification by two successive preparative HPLC systems, the final product was identified by HPLC and then analyzed by (1)H, (13)C, (1)H-(1)H COSY NMR spectrometry.  相似文献   
144.
Silverman WR  Heginbotham L 《FEBS letters》2007,581(26):5024-5028
Although the cyclic nucleotide-modulated potassium channel from Mesorhizobium loti, MlotiK1, is easily studied using a 86Rb+ flux assay, its comparatively low activity raises serious concerns about the integrity of the purified protein. We investigated the pathway of uptake using a multi-pronged approach. First, we probed the conduction pathway using quaternary ammonium compounds known to block conduction in eukaryotic K+ channels. Second, we examined the effect of chemical modification of putative pore-lining residues. Our results are consistent with ions traversing MlotiK1 along a conduction pathway like that of the eukaryotic channels, but at a much slower rate.  相似文献   
145.
146.
This study investigated the potential adverse effects of tert-butyl acetate (TBAc) on maternal toxicity and embryo-fetal development after maternal exposure of pregnant rats from gestational days 6 through 19. TBAc was administered to pregnant rats by gavage at 0, 400, 800, and 1,600 mg/kg/day. All dams were subjected to a Caesarean section on day 20 of gestation, and their fetuses were examined for any morphological abnormalities. At 1,600 mg/kg, maternal toxicity manifested as increases in the incidence of clinical signs and death, lower body weight gain and food intake, increases in the weights of adrenal glands and liver, and a decrease in thymus weight. Developmental toxicity included a decrease in fetal weight, an increase in the incidence of skeletal variation, and a delay in fetal ossification. At 800 mg/kg, only a minimal developmental toxicity, including an increase in the incidence of skeletal variation and a delay in fetal ossification, were observed. In contrast, no adverse maternal or developmental effects were observed at 400 mg/kg. These results show that a 14-day repeated oral dose of TBAc is embryotoxic at a maternally toxic dose (i.e., 1,600 mg/kg/day) and is minimally embryotoxic at a nonmaternally toxic dose (i.e., 800 mg/kg/day) in rats. However, no evidence for the teratogenicity of TBAc was noted in rats. It is concluded that the developmental findings observed in the present study are secondary effects to maternal toxicity. Under these experimental conditions, the no-observed-adverse-effect level of TBAc is considered to be 800 mg/kg/day for dams and 400 mg/kg/day for embryo-fetal development.  相似文献   
147.
148.
绿狐尾藻(Myriophyllum aquaticum)对高浓度铵(NH+4)具有较高的耐受性, 是处理养殖废水的优选植物。探究外源铵对绿狐尾藻光合色素组成及氮(N)、磷(P)化学计量学特征的影响, 对提高绿狐尾藻人工湿地系统的处理效率具有重要意义。该研究设置0、0.1、1、5、15、30 mmol·L-1 6个NH4+浓度, 室内培养21天, 测定分析不同铵浓度下绿狐尾藻叶绿素含量、N含量、P含量和N:P的变化特征。结果表明, 随外源铵浓度增加, 绿狐尾藻的相对茎高和相对生物量先升高后降低, 且通过拟合曲线方程发现, 外源铵在16.22和12.58 mmol·L-1时, 其相对茎高和相对生物量达到最大值。随外源铵浓度的增加, 绿狐尾藻叶片叶绿素含量显著降低, 而茎中叶绿素含量增加, 且叶绿素a含量变化的幅度比叶绿素b大, 但对叶绿素a/b影响不显著, 仅在5 mmol·L-1处理时茎叶绿素a/b显著下降。随外源铵浓度增加, 与CK相比, 叶片和茎的N含量分别显著增加了85%-235%和127%-373%, 叶片P含量增幅为49%-51%。当外源铵浓度不大于15 mmol·L-1时, 叶片和茎的N含量、N:P增加速度较快, 且相对茎高和相对生物量增长较快。相关分析表明, 叶片N、P含量和N:P与总叶绿素含量呈极显著负相关关系, 而在茎中呈显著或极显著正相关关系。综上所述, 外源铵浓度在12-16 mmol·L-1范围内时, 绿狐尾藻生长良好, 生物量更大, N和P的吸收量更高, 从而利用其构建的人工湿地可以有效去除污染废水的N、P, 达到高效净化水体的目的。  相似文献   
149.
A small library of antiplasmodial methoxy-thiazinoquinones, rationally designed on the model of the previously identified hit 1, has been prepared by a simple and inexpensive procedure. The synthetic derivatives have been subjected to in vitro pharmacological screening, including antiplasmodial and toxicity assays. These studies afforded a new lead candidate, compound 9, endowed with higher antiplasmodial potency compared to 1, a good selectivity index when tested against a panel of mammalian cells, no toxicity against RBCs, a synergistic antiplasmodial action in combination with dihydroartemisinin, and a promising inhibitory activity on stage V gametocyte growth. Computational studies provided useful insights into the structural requirements needed for the antiplasmodial activity of thiazinoquinone compounds and on their putative mechanism of action.  相似文献   
150.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号