首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4010篇
  免费   233篇
  国内免费   121篇
  4364篇
  2024年   12篇
  2023年   61篇
  2022年   85篇
  2021年   107篇
  2020年   115篇
  2019年   103篇
  2018年   118篇
  2017年   99篇
  2016年   101篇
  2015年   99篇
  2014年   180篇
  2013年   252篇
  2012年   110篇
  2011年   185篇
  2010年   112篇
  2009年   158篇
  2008年   172篇
  2007年   159篇
  2006年   174篇
  2005年   200篇
  2004年   181篇
  2003年   151篇
  2002年   149篇
  2001年   100篇
  2000年   60篇
  1999年   80篇
  1998年   105篇
  1997年   78篇
  1996年   75篇
  1995年   68篇
  1994年   79篇
  1993年   48篇
  1992年   54篇
  1991年   44篇
  1990年   77篇
  1989年   46篇
  1988年   39篇
  1987年   65篇
  1986年   25篇
  1985年   33篇
  1984年   45篇
  1983年   21篇
  1982年   32篇
  1981年   28篇
  1980年   18篇
  1979年   21篇
  1978年   10篇
  1977年   6篇
  1976年   10篇
  1974年   5篇
排序方式: 共有4364条查询结果,搜索用时 0 毫秒
61.
62.
Reactive oxygen species (ROS) behave as second messengers in signal transduction for a series of receptor/ligand interactions. A major regulatory role is played by hydrogen peroxide (H2O2), more stable and able to freely diffuse through cell membranes. Copper–zinc superoxide dismutase (CuZn-SOD)-1 is a cytosolic enzyme involved in scavenging oxygen radicals to H2O2 and molecular oxygen, thus representing a major cytosolic source of peroxides. Previous studies suggested that superoxide anion and H2O2 generation are involved in T cell receptor (TCR)-dependent signaling. Here, we describe that antigen-dependent activation of human T lymphocytes significantly increased extracellular SOD-1 levels in lymphocyte cultures. This effect was accompanied by the synthesis of SOD-1-specific mRNA and by the induction of microvesicle SOD-1 secretion. It is of note that SOD-1 increased its concentration specifically in T cell population, while no significant changes were observed in the “non-T” cell counterpart. Moreover, confocal microscopy showed that antigen-dependent activation was able to modify SOD-1 intracellular localization in T cells. Indeed, was observed a clear SOD-1 recruitment by TCR clusters. The ROS scavenger N-acetylcysteine (NAC) inhibited this phenomenon. Further studies are needed to define whether SOD-1-dependent superoxide/peroxide balance is relevant for regulation of T cell activation, as well as in the functional cross talk between immune effectors.  相似文献   
63.
Eu‐doped aluminum nitride phosphors were successfully prepared using simple direct nitridation of a metallic aluminum and Eu2O3 powder mixture in flowing ammonia. AlN formed at reaction temperatures >900°C, and Eu3+ transformed into the secondary oxide phase EuAl2O4 in the nitridation condition. Phase pure AlN was obtained by post‐heat treatment of the nitridated product at 1600°C for 3 h in a nitrogen atmosphere, with an Eu2+ doping concentration < 0.5%. The phosphors exhibited broad green emission centered at 521 nm under 363 nm excitation. The luminescence of the phosphor was significantly influenced by the post‐heat treatment temperature, which affected the dissolution of Eu2+, phase purity, crystallinity, and particle size of the AlN host.  相似文献   
64.
Wide Dynamic Range (WDR) neurons in the spinal cord receive inputs from the contralateral side that, under normal conditions, are ineffective in generating an active response. These inputs are effective when the target WDRs change their excitability conditions. To further reveal the mechanisms supporting this effectiveness shift, we investigated the weight of the excitation of the contralateral neurons on the target WDR responses. In the circuit of presynaptic (sending) and postsynaptic (receiving) neurons in crossed spinal connections the fibres that form the presynaptic neurons impinge on postsynaptic neurons can be considered the final relay of this contralateral pathway. The enhancement of the presynaptic neuron excitability may thus modify the efficacy of the contralateral input. Pairs of neurons each on a side of the spinal cord, at the L5–L6 lumbar level were simultaneously recorded in intact, anaesthetized, paralysed rats. The excitatory aminoacid NMDA and strychnine, the antagonist of the inhibitory aminoacid glycine, were iontophoretically administrated to presynaptic neurons to increase their excitability. Before and during the drug administration, spontaneous and noxious-evoked activities of the neurons were analysed. During the iontophoresis of the two substances we found that noxious stimuli applied to the receptive field of presynaptic neurons activated up to 50% of the previously unresponsive postsynaptic neurons on the opposite side. Furthermore, the neurons on both sides of the spinal cord showed significantly increased spontaneous activity and amplified responses to ipsilateral noxious stimulation. These findings indicate that the contralateral input participates in the circuit dynamics of spinal nociceptive transmission, by modulating the excitability of the postsynaptic neurons. A possible functional role of such a nociceptive transmission circuit in neuronal sensitization following unilateral nerve injury is hypothesized.  相似文献   
65.
Neutral salts activate and stabilize thermolysin. In this study, to explore the mechanism, we analyzed the interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and thermolysin by ANS fluorescence. At pH 7.5, the fluorescence of ANS increased and blue-shifted with increasing concentrations (0–2.0?μM) of thermolysin, indicating that the anilinonaphthalene group of ANS binds with thermolysin through hydrophobic interaction. ANS did not alter thermolysin activity. The dissociation constants (Kd) of the complex between ANS and thermolysin was 33?±?2?μM at 0?M NaCl at pH 7.5, decreased with increasing NaCl concentrations, and reached 9?±?3?μM at 4?M NaCl. The Kd values were not varied (31?34?μM) in a pH range of 5.5?8.5. This suggests that at high NaCl concentrations, Na+ and/or Cl ions bind with thermolysin and affect the binding of ANS with thermolysin. Our results also suggest that the activation and stabilization of thermolysin by NaCl are partially brought about by the binding of Na+ and/or Cl ions with thermolysin.  相似文献   
66.
《Fungal biology》2020,124(10):903-913
Although water is essential for photosynthetic activation in lichens, rates of vapor uptake and activation in humid air, which likely influence their niche preferences and distribution ranges, are insufficiently known. This study simultaneously quantifies rehydration kinetics and PSII reactivation in sympatric, yet morphologically and functionally distinct cephalolichens (Lobaria amplissima, Lobaria pulmonaria, Lobaria virens). High-temporal resolution monitoring of rehydrating thalli by automatic weighing combined with chlorophyll fluorescence imaging of maximal PSII efficiency (FV/FM) was applied to determine species-specific rates of vapor uptake and photosynthetic activation. The thin and loosely attached growth form of L. pulmonaria rehydrates and reactivates faster in humid air than the thick L. amplissima, with L. virens in between. This flexible hydration strategy is consistent with L. pulmonaria’s wide geographical distribution stretching from rainforests to continental forests. By contrast, the thick and resupinate L. amplissima reactivates slowly in humid air but stores much water when provided in abundance. This prolongs active periods after rain, which could represent an advantage where abundant rain and stem flow alternates with long-lasting drying. Understanding links between morphological traits and functional responses, and their ecological implications for species at risk, is crucial to conservation planning and for modelling populations under various climate scenarios.  相似文献   
67.
68.
Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme‐kinetic hypothesis suggests that decomposition of low‐quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high‐quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme‐substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low‐density fraction (LF) which represents readily accessible, mineral‐free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30‐days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6–1.8 g cm?3) and bulk soil was measured by solid‐state 13C‐NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl‐C relative to O‐alkyl‐C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two‐ to three‐fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C‐use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme‐kinetic interpretation of widely observed C quality‐temperature relationship for short‐term decomposition. Factors controlling long‐term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.  相似文献   
69.
Neutron-induced γ-ray emission tomography for quantitative determination of the concentration and distribution of elements in a selected plane through a biological specimen is briefly explained and applied by way of illustration to the analysis of gallstones. A system capable of carrying out studies of the binding site of75Se in different matrices using time differential perturbed angular correlation spectroscopy is also briefly described. Developments in the detector technology of positron emission tomography have allowed small-diameter imaging devices to be built for in vivo preclinical evaluation of new tracers in small animals and are discussed in the context of a proposed experiment combining the techniques mentioned above.  相似文献   
70.
α‐Syntrophin is a component of the dystrophin scaffold‐protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α‐Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4‐mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wild‐type mice were pulse‐labeled with [6‐14C] glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer‐assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High‐resolution autoradiographic assays detected a 17% side‐to‐side difference (p < 0.05) in inferior colliculus of KO mice, not wild‐type mice. However, there were no labeling differences between KO and wild‐type mice for five major HPLC fractions from four dissected regions, presumably because of insufficient anatomical resolution. The results suggest a role for AQP4‐mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号