首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29634篇
  免费   1448篇
  国内免费   978篇
  2024年   35篇
  2023年   389篇
  2022年   646篇
  2021年   764篇
  2020年   716篇
  2019年   1030篇
  2018年   1030篇
  2017年   602篇
  2016年   733篇
  2015年   923篇
  2014年   1760篇
  2013年   2156篇
  2012年   1201篇
  2011年   1769篇
  2010年   1263篇
  2009年   1384篇
  2008年   1572篇
  2007年   1566篇
  2006年   1433篇
  2005年   1283篇
  2004年   1182篇
  2003年   995篇
  2002年   945篇
  2001年   588篇
  2000年   524篇
  1999年   525篇
  1998年   547篇
  1997年   468篇
  1996年   410篇
  1995年   398篇
  1994年   367篇
  1993年   298篇
  1992年   254篇
  1991年   241篇
  1990年   206篇
  1989年   175篇
  1988年   154篇
  1987年   135篇
  1986年   102篇
  1985年   149篇
  1984年   206篇
  1983年   157篇
  1982年   176篇
  1981年   134篇
  1980年   116篇
  1979年   92篇
  1978年   60篇
  1977年   56篇
  1976年   38篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
31.
Up regulation of the transforming growth factor-beta 1 (TGF-β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.  相似文献   
32.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   
33.
34.
《Fungal biology》2020,124(2):83-90
Latterly, the upsurge in use of antifungal drugs has brought about the emergence of several drug-resistance strains, making it skeptical to continue relying on current therapeutic regime. In the necessity of resistance-free antifungal agent, flavonoids presented possibilities of replacing existing drugs, displaying antifungal activity against pathogenic fungi. Among them, quercetin, one of the most representative flavonoids, exhibited antifungal activity against Candida albicans. To inspect the further understanding regarding quercetin, the antifungal mode of action of quercetin was investigated. In the initial step, the apoptosis was monitored after quercetin treatment. Moreover, intracellular levels of Mg2+ was assessed and was determined that Mg2+ increase occurred under the influence of quercetin. In addition, several features of mitochondrial dysfunction were monitored. Mitochondrial dysfunction triggers decrease in mitochondrial redox levels and leads to disruption in mitochondrial antioxidant system. Increased intracellular ROS and decreased intracellular redox levels were also displayed, indicating the occurrence of overall disruption in antioxidant systems. Sequentially, DNA fragmentation was observed and this DNA damage in turn induces apoptosis. In analyses, hexaamminecobalt(III) chloride (Cohex) was applied to inhibit Mg2+ transport between cytosol and mitochondria. Cohex attenuated the effects induced by quercetin, which demonstrates that the presence of Mg2+ is essential in quercetin-induced apoptosis.  相似文献   
35.
The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.  相似文献   
36.
GPR35 is a rhodopsin-like G protein-coupled receptor identified in 1998. It has been reported that kynurenic acid, a tryptophan metabolite, may act as an endogenous ligand for GPR35. However, the concentrations of kynurenic acid required to elicit the cellular responses are usually high, raising the possibility that another endogenous ligand may exist. In this study, we searched for another endogenous ligand for GPR35. Finally, we found that the magnitude of the Ca2+ response induced by 2-acyl lysophosphatidic acid in the GPR35-expressing HEK293 cells was markedly greater than that in the vector-transfected control cells. Such a difference was not apparent in the case of 1-acyl lysophosphatidic acid. 2-Acyl lysophosphatidic acid also caused the sustained activation of RhoA and the phosphorylation of extracellular signal-regulated kinase, and triggered the internalization of the GPR35 molecule. These results strongly suggest that 2-acyl lysophosphatidic acid is an endogenous ligand for GPR35.  相似文献   
37.
Acetylcholine receptor (AChR) purified from human skeletal muscle affinity-alkylated with bromoacetyl[methyl-3H]choline bromide ([3H]BAC) in mildly reducing conditions to yield a specifically radiolabeled polypeptide, Mr 44,000, the alpha-subunit. The binding of [125I]alpha-bungarotoxin to AChR was completely inhibited by affinity-alkylation, indicating that the human AChR's binding site for alpha-bungarotoxin is closely associated with the alpha-subunit's acetylcholine binding site. Structures in the vicinity of the alpha-bungarotoxin binding sites of AChRs from human muscle and Torpedo electric organ were compared by varying the conditions of alkylation. Under optimal conditions of reduction and alkylation, both human and Torpedo AChR incorporated BAC in equivalence to the number of alpha-bungarotoxin binding sites. However, with limited conditions of reduction but sufficient BAC to alkylate 100% of the alpha-bungarotoxin binding sites of human AChR, only 71% of the Torpedo AChR's binding sites were alkylated. In optimal conditions of reduction but with the minimal concentration of BAC that permitted 100% alkylation of the human AChR's alpha-bungarotoxin sites, only 74% of the Torpedo AChR's binding sites were alkylated. These data suggest that the neurotransmitter binding region of human muscle AChR is structurally dissimilar from that of Torpedo electric organ, having a higher binding affinity for BAC and an adjacent disulfide bond that is more readily accessible to reducing agents.  相似文献   
38.
Glycoalkaloids were used as evidence of the affinities of nine taxa of Solanum Series Megistacrolobum and related potato cultigens from western Bolivia. S. boliviense, S. sanctae-rosae and S. toralapanum contain the commertetraose sugar moiety and appear to represent a relatively wild group within the Series. S. megistacrolobum, S. sogarandinum and S. raphanifolium show anomolous glycoalkaloid profiles that probably reflect hybridization associated with human disturbance. Primitive forms of the S. χ ajanhuiri cultigen are indistinguishable chemicaliy from conspecific weeds that were previously classified as S. megistacrolobum. Variation in total glycoalkaloid content within Series Megistacrolobum likely reflects direct selection by humans for reduced glycoalkaloid levels during the domestication process.  相似文献   
39.
Avian progesterone receptor exists as two forms, A and B, with molecular weights of 79,000 and 110,000 daltons, respectively. The origin and significance of these two forms is an area of active investigation and debate. Monoclonal antibodies produced against these two forms were used to examine receptor stability in cytosol and changes in the receptor forms induced by hormone binding. The lability of hormone binding at elevated temperatures is well documented. Analysis by Western blotting showed the receptor was stable in freshly prepared oviduct cytosol for 2 hr at 37°C, while hormone binding was lost within 30 min. However, loss of receptor through degradation was seen when cytosol was prepared from frozen tissue or when homogenization was excessive. Progesterone was injected into diethylstilbestrol-stimulated chicks to examine, in vivo, effects of hormone treatment on receptor forms in the cytosol and nuclear fractions. Progesterone treatment caused a time- and dose-dependent conversion of the A receptor to a form (A′) with a slower electrophoretic mobility. The cytosolic progesterone receptor was divided equally between the B and A forms, while the nuclear receptor was predominantly A′. The amount of nuclear receptor was consistently less than cytosolic receptor. Receptor phosphorylation was analyzed by incubating tissue minces with [32P]orthophosphate with or without progesterone followed by immune isolation of receptor forms. Progesterone treatment caused a time-dependent increase in cytosol receptor phosphorylation which was evident after 5 min of treatment. This phosphorylation was observed with both the A and B receptor forms. The results indicate that receptor phosphorylation is a very early event during progesterone action.  相似文献   
40.
Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM–TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号