首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3578篇
  免费   267篇
  国内免费   83篇
  2024年   2篇
  2023年   44篇
  2022年   86篇
  2021年   96篇
  2020年   118篇
  2019年   154篇
  2018年   178篇
  2017年   79篇
  2016年   102篇
  2015年   104篇
  2014年   256篇
  2013年   312篇
  2012年   185篇
  2011年   195篇
  2010年   145篇
  2009年   157篇
  2008年   162篇
  2007年   172篇
  2006年   150篇
  2005年   138篇
  2004年   129篇
  2003年   140篇
  2002年   133篇
  2001年   110篇
  2000年   87篇
  1999年   73篇
  1998年   67篇
  1997年   50篇
  1996年   30篇
  1995年   19篇
  1994年   28篇
  1993年   28篇
  1992年   26篇
  1991年   15篇
  1990年   14篇
  1989年   20篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   8篇
  1982年   15篇
  1981年   13篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1977年   2篇
  1976年   6篇
  1972年   1篇
排序方式: 共有3928条查询结果,搜索用时 312 毫秒
961.
The actin cytoskeleton has been implicated in endocytosis, yet few molecules that link these systems have been identified. Here, we have cloned and characterized mHip1R, a protein that is closely related to huntingtin interacting protein 1 (Hip1). These two proteins are mammalian homologues of Sla2p, an actin binding protein important for actin organization and endocytosis in yeast. Sequence alignments and secondary structure predictions verified that mHip1R belongs to the Sla2 protein family. Thus, mHip1R contains an NH(2)-terminal domain homologous to that implicated in Sla2p's endocytic function, three predicted coiled-coils, a leucine zipper, and a talin-like actin-binding domain at the COOH terminus. The talin-like domain of mHip1R binds to F-actin in vitro and colocalizes with F-actin in vivo, indicating that this activity has been conserved from yeast to mammals. mHip1R shows a punctate immunolocalization and is enriched at the cell cortex and in the perinuclear region. We concluded that the cortical localization represents endocytic compartments, because mHip1R colocalizes with clathrin, AP-2, and endocytosed transferrin, and because mHip1R fractionates biochemically with clathrin-coated vesicles. Time-lapse video microscopy of mHip1R-green fluorescence protein (GFP) revealed a blinking behavior similar to that reported for GFP-clathrin, and an actin-dependent inward movement of punctate structures from the cell periphery. These data show that mHip1R is a component of clathrin-coated pits and vesicles and suggest that it might link the endocytic machinery to the actin cytoskeleton.  相似文献   
962.
An essential role for katanin in severing microtubules in the neuron   总被引:15,自引:0,他引:15  
Several lines of evidence suggest that microtubules are nucleated at the neuronal centrosome, and then released for transport into axons and dendrites. Here we sought to determine whether the microtubule-severing protein known as katanin mediates microtubule release from the neuronal centrosome. Immunomicroscopic analyses on cultured sympathetic neurons show that katanin is present at the centrosome, but is also widely distributed throughout the neuron. Microinjection of an antibody that inactivates katanin results in a dramatic accumulation of microtubules at the centrosome, indicating that katanin is indeed required for microtubule release from the centrosome. However, the antibody also causes an inhibition of axon outgrowth that is more immediate than expected on this basis alone. It may be that katanin severs microtubules throughout the cell body to keep them sufficiently short to be efficiently transported into developing processes. Consistent with this idea, there were significantly fewer free ends of microtubules in the cell bodies of neurons that had been injected with the katanin antibody compared with controls. These results indicate that microtubule-severing by katanin is essential for releasing microtubules from the neuronal centrosome, and also for regulating the length of the microtubules after their release.  相似文献   
963.
Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Delta cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Delta cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation.  相似文献   
964.
965.
966.
In this study, we examined the impact of matrix metalloproteinases (MMP) on epithelialization, granulation tissue development, wound contraction, and alpha-smooth muscle actin (ASMA) expression during cutaneous wound repair through systemic administration of the synthetic broad-spectrum MMP inhibitor GM 6001 (N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide). Four full-thickness excisional wounds (50 mm2) on the back of 22 young female Sprague-Dawley rats, 12 treated with GM 6001 100 mg/kg and 10 with vehicle, were allowed to heal by secondary intention. GM 6001-treated wounds were minimally resurfaced with neoepithelium, despite unaltered keratinocyte proliferation in wound edges, whereas control wounds were completely covered with 3-7 cell layers of parakeratinized epithelium on post-wounding day 7. Hydroxyproline concentration, a marker of collagen, and cell proliferation in granulation tissue did not differ significantly between GM 6001-treated and control groups. Impaired wound contraction (P < 0.01) was associated with a dramatic reduction of ASMA-positive myofibroblasts in granulation tissue of GM 6001 wounds. This was not due to GM6001 blocking transforming growth factor-beta1 (TGF-beta1)-induced myofibroblast differentiation since GM 6001 did not inhibit TGF-beta1-induced ASMA expression and force generation in cultured rat dermal fibroblasts. The profound impairment of skin repair by the nonselective MMP inhibitor GM 6001 suggests that keratinocyte resurfacing, wound contraction, and granulation tissue organization are highly MMP-dependent processes.  相似文献   
967.
Modifications in the cell membrane potential have been suggested to affect signaling mechanisms participating in diverse cellular processes, many of which involve structural cellular alterations. In order to contribute some evidence in this respect, we explored the effects of several depolarizing procedures on the structure and monolayer organization of bovine corneal endothelial cells in culture. Visually confluent cell monolayers were incubated with or without the depolarizing agent, either in a saline solution or in culture medium for up to 30 min. Membrane potential was monitored by fluorescence microscopy using oxonol V. Fluorescent probes were employed for F-actin, microtubules, and vinculin. Depolarization of the plasma membrane, achieved via the incorporation of gramicidin D into confluent endothelial cells or by modifications of the extracellular saline composition, provoked an increment of oxonol fluorescence and changes in cell morphology, consisting mainly of modifications in the cytoskeletal organization. In some areas, noticeable intercellular spaces appear. The cytoskeleton modifications mainly consist of a marked redistribution of F-actin and microtubules, with accompanying changes in vinculin localization. The results suggest that the depolarization of the plasma membrane potential may participate in mechanisms involved in cytoskeleton organization and monolayer continuity in corneal endothelial cells in culture.  相似文献   
968.
969.
The tumor necrosis factor- death domain pathway contributes to cellular degeneration in a variety of conditions. This study investigates the hypothesis that this death domain pathway is progressively induced in the brain during the progression of Alzheimer's disease (AD). AD cases had increased levels of proapoptotic markers including tumor necrosis factor- (TNF), TNF receptor type 1 (TNF-R1), TNF receptor–associated death domain (TRADD), and caspase-3, 2- to 10-fold higher (P < .01) than age-matched controls and 1 to 3 times higher than transitional cases. In striking contrast, potentially neuroprotective TNF receptor type 2 (TNF-R2), and Fas-associated death domain-like interleukin-1–converting enzyme (FLICE) inhibitor protein (FLIP) were decreased in AD as compared with age-matched control cases (P < .01). Overall, there was an elevation in proapoptotic elements, including a 5-fold increase in TNF-R1 and a 12-fold decrease in FLIP in AD brains. These changes may translate to increased degenerative potential because the downstream effector caspase-3 and product of the TNF pathway was also increased in parallel with enhanced TNF proapoptotic conditions. Our findings suggest that the TNF death receptor pathway and caspases are activated in the early stages of neuronal degeneration in AD.  相似文献   
970.
微丝在低渗牵张诱导毒蕈碱电流增加中的作用   总被引:1,自引:0,他引:1  
Wang ZY  Yu YC  Cui YF  Li L  Guo HS  Li ZL  Xu WX 《生理学报》2003,55(2):177-182
在急性分离的豚鼠胃窦平滑肌细胞上 ,利用膜片钳技术的传统全细胞模式记录离子电流的方法 ,探讨微丝在低渗牵张诱导毒蕈碱电流增加中的作用。当豚鼠胃窦平滑肌细胞的膜电位钳制在 - 2 0mV时 ,灌流液中 5 0μmol/L 卡巴胆碱 (carbachol,CCh)或电极内液中 0 5mmol/LGTPγS均可引导毒蕈碱电流 (muscariniccurrentICCh) ,低渗牵张 ( 2 0 2mOsmol/L)分别使其增加 145± 2 7%和 183± 3 0 % ;当电极内液中加入 2 0 μmol/L的细胞松弛B (一种微丝骨架的解聚剂 )时 ,低渗牵张使ICCh只增加 70± 6% ;而电极内液中加入 2 0 μmol/L的鬼笔环肽 (一种微丝骨架的稳定剂 )则使ICCh增加了 5 45± 81%。结果表明 ,低渗牵张可增加由卡巴胆碱或GTPγS诱导的毒蕈碱电流 ,微丝参与调节低渗牵张诱导豚鼠胃窦平滑肌细胞ICCh增加的作用  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号