首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3588篇
  免费   267篇
  国内免费   83篇
  2024年   2篇
  2023年   49篇
  2022年   91篇
  2021年   96篇
  2020年   118篇
  2019年   154篇
  2018年   178篇
  2017年   79篇
  2016年   102篇
  2015年   104篇
  2014年   256篇
  2013年   312篇
  2012年   185篇
  2011年   195篇
  2010年   145篇
  2009年   157篇
  2008年   162篇
  2007年   172篇
  2006年   150篇
  2005年   138篇
  2004年   129篇
  2003年   140篇
  2002年   133篇
  2001年   110篇
  2000年   87篇
  1999年   73篇
  1998年   67篇
  1997年   50篇
  1996年   30篇
  1995年   19篇
  1994年   28篇
  1993年   28篇
  1992年   26篇
  1991年   15篇
  1990年   14篇
  1989年   20篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   8篇
  1982年   15篇
  1981年   13篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1977年   2篇
  1976年   6篇
  1972年   1篇
排序方式: 共有3938条查询结果,搜索用时 15 毫秒
911.
A new rapid method of the cytoplasmic actin purification, not requiring the use of denaturants or high concentrations of salt, was developed, based on the affinity chromatography using the C-terminal half of gelsolin (G4-6), an actin filament severing and capping protein. When G4-6 expressed in Escherichia coli was added to the lysate of HeLa cells or insect cells infected with a baculovirus encoding the beta-actin gene, in the presence of Ca2+ and incubated overnight at 4 °C, actin and G4-6 were both detected in the supernatant. Following the addition of Ni-Sepharose beads to the mixture, only actin was eluted from the Ni-NTA column by a Ca2+-chelating solution. The functionality of the cytoplasmic actins thus purified was confirmed by measuring the rate of actin polymerization, the gliding velocity of actin filaments in an in vitro motility assay on myosin V-HMM, and the ability to activate the ATPase activity of myosin V-S1.  相似文献   
912.
Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five αTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform’s affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC–actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee–von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.  相似文献   
913.
914.

Objective

The parasympathetic nervous system regulates inflammation in peripheral tissues through a pathway termed the “cholinergic anti-inflammatory reflex” (CAIR). Mice deficient in the alpha 7 nicotinic acetylcholine receptor (α7−/−) have an impaired CAIR due to decreased signaling through this pathway. The purpose of this study was to determine if the increased inflammation in α7−/− mice is associated with enhanced serum and macrophage atherogenicity.

Methods

We measured serum markers of inflammation and oxidative stress, and macrophage atherogenicity in mouse peritoneal macrophages harvested from α7−/− mice on the background of C57BL/6 mice, as well as on the background of the atherosclerotic Apolipoprotein E-deficient (ApoE−/−) mice.

Results

α7-Deficiency had no significant effects on serum cholesterol, or on markers of serum oxidative stress (TBARS and paraoxonase1 activities). However, α7-deficiency significantly increased serum CRP and IL-6 (p < 0.05) levels in atherosclerotic mice, confirming an anti-inflammatory role for the α7 receptor. Macrophage cholesterol mass was increased by 25% in both normal and atherosclerotic mice in the absence of the α7 receptor (p < 0.05). This was accompanied by conditional increases in oxidized LDL uptake and in macrophage total peroxide levels. Furthermore, α7-deficiency reduced macrophage paraoxonase2 mRNA and activity by 50-100% in normal and atherosclerotic mice (p < 0.05 for each), indicating a reduction in macrophage anti-oxidant capacity in the α7−/− mice.

Conclusion

The above results suggest an anti-atherogenic role for the macrophage α7nAchr, through a mechanism that involves attenuated macrophage oxidative stress and decreased uptake of oxidized LDL.  相似文献   
915.
916.
917.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   
918.
Alpha sarcoglycan (α-SG) is highly expressed in differentiated striated muscle, and its disruption causes limb-girdle muscular dystrophy. Accordingly, the myogenic master regulator MyoD finely modulates its expression. However, the mechanisms preventing α-SG gene expression at early stages of myogenic differentiation remain unknown. In this study, we uncovered Sox9, which was not previously known to directly bind muscle gene promoters, as a negative regulator of α-SG gene expression. Reporter gene and chromatin immunoprecipitation assays revealed three functional Sox-binding sites that mediate α-SG promoter activity repression during early myogenic differentiation. In addition, we show that Sox9-mediated inhibition of α-SG gene expression is independent of MyoD. Moreover, we provide evidence suggesting that Smad3 enhances the repressive activity of Sox9 over α-SG gene expression in a transforming growth factor-β-dependent manner. On the basis of these results, we propose that Sox9 and Smad3 are responsible for preventing precocious activation of α-SG gene expression during myogenic differentiation.  相似文献   
919.
Ezrin, radixin and moesin are a family of proteins that provide a link between the plasma membrane and the cortical actin cytoskeleton. The regulated targeting of ezrin to the plasma membrane and its association with cortical F-actin are more than likely functions necessary for a number of cellular processes, such as cell adhesion, motility, morphogenesis and cell signalling. The interaction with F-actin was originally mapped to the last 34 residues of ezrin, which correspond to the last three helices (αB, αC and αD) of the C-terminal tail. We set out to identify and mutate the ezrin/F-actin binding site in order to pinpoint the role of F-actin interaction in morphological processes as well as signal transduction. We report here the generation of an ezrin mutant defective in F-actin binding. We identified four actin-binding residues, T576, K577, R579 and I580, that form a contiguous patch on the surface of the last helix, αD. Interestingly, mutagenesis of R579 also eliminated the interaction of band four-point one, ezrin, radixin, moesin homology domains (FERM) and the C-terminal tail domain, identifying a hotspot of the FERM/tail interaction. In vivo expression of the ezrin mutant defective in F-actin binding and FERM/tail interaction (R579A) altered the normal cell surface structure dramatically and inhibited cell migration. Further, we showed that ezrin/F-actin binding is required for the receptor tyrosine kinase signal transfer to the Ras/MAP kinase signalling pathway. Taken together, these observations highlight the importance of ezrin/F-actin function in the development of dynamic membrane/actin structures critical for cell shape and motility, as well as signal transduction.  相似文献   
920.
A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ∼ 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ∼ 1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ∼ 10 and 0.2 μM and phosphorylated SMM with Kd ∼ 20 and 0.2 μM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号