首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   26篇
  国内免费   88篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   11篇
  2020年   20篇
  2019年   21篇
  2018年   22篇
  2017年   20篇
  2016年   25篇
  2015年   21篇
  2014年   28篇
  2013年   41篇
  2012年   22篇
  2011年   22篇
  2010年   5篇
  2009年   35篇
  2008年   43篇
  2007年   49篇
  2006年   38篇
  2005年   48篇
  2004年   29篇
  2003年   26篇
  2002年   38篇
  2001年   30篇
  2000年   22篇
  1999年   20篇
  1998年   31篇
  1997年   24篇
  1996年   20篇
  1995年   18篇
  1994年   18篇
  1993年   19篇
  1992年   19篇
  1991年   19篇
  1990年   20篇
  1989年   14篇
  1988年   12篇
  1987年   18篇
  1986年   13篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   16篇
  1979年   6篇
  1977年   1篇
排序方式: 共有946条查询结果,搜索用时 78 毫秒
91.
Experiments addressing the role of plant species diversity for ecosystem functioning have recently proliferated. Most studies have focused on plant biomass responses. However, microbial processes involved in the production of N2O and the oxidation of atmospheric CH4 could potentially be affected via effects on N cycling, on soil diffusive properties (due to changes in water relations and root architecture) and by more direct interactions of plants with soil microbes. We studied ecosystem-level CH4 and N2O fluxes in experimental communities assembled from two pasture soils and from combinations of 1, 3, 6, 8 or 9 species typical for these pastures. The soils contrasted with respect to texture and fertility. N2O emissions decreased with diversity and increased in the presence of legumes. Soils were sinks for CH4 at all times; legume monocultures were a smaller sink for atmospheric CH4 than non-legume monocultures, but no effect of species richness per se was detected. However, both the exchange of CH4 and N2O strongly depended on plant community composition, and on the interaction of composition with soil type, indicating that the functional role of species and their interactions differed between soils. N2O fluxes were mainly driven by effects on soil nitrate and on nitrification while soil moisture had less of an effect. Soil microbial C and N and N mineralisation rates were not altered. The driver of the interactive soil type×plant community composition-effects was less clear. Because soil methanotrophs may take longer to respond to alterations of N cycling than the 1/2 year treatment in this study, we also tested species richness-effects in two separate 5-year field studies, but results were ambiguous, indicating complex interactions with soil disturbance. In conclusion, our study demonstrates that plant community composition can affect the soil trace gas balance, whereas plant species richness per se was less important; it also indicates a potential link between the botanical composition of plant communities and global warming.  相似文献   
92.
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.  相似文献   
93.
【目的】采用传统的纯培养技术,分离新疆阿克苏地区典型的盐碱地中的粘细菌,并初步分析盐碱地土壤中可培养粘细菌资源的多样性。【方法】采用传统的水琼脂法、滤纸法和改良的土壤浸出液法分离新疆阿克苏地区25份盐碱地的粘细菌。结合分析土样的酸碱度、含盐量、地理位置及其植被分布情况分析新疆阿克苏地区盐碱地粘细菌资源多样性。【结果】共分离到58株粘细菌,它们被鉴定为:粘球菌属(Myxococcus)33株;珊瑚球菌属(Corallococcus)14株;孢囊杆菌属(Cystobacter)6株;堆囊菌属(Sorangium)2株;侏囊菌属(Nannocystis)2株;多囊菌属(Polyangium)1株。其中粘球菌抗逆性强,分离的菌株数最多,在pH值7.5-8.5范围的盐碱地中普遍存在;其次为珊瑚球菌属;而侏囊菌属、多囊菌属的菌株较少见。【结论】新疆阿克苏地区盐碱地粘细菌多样性不高,可能受分离纯化方法、含盐量以及土壤性质影响较大。  相似文献   
94.
Totally 25 marine soil samples were collected from the region of Palk Strait of Bay of Bengal, Tamil Nadu, and were subjected to the isolation of actinomycetes. Sixty-eight morphologically distinct isolates were obtained and 37% (25) of them had antimicrobial activity. The potential producer was named as Streptomyces sp. VPTS3-1 and the phylogenetic evaluation on the basis of 16S rDNA sequence further categorized the organism as Streptomyces afghaniensis VPTS3-1. Further, the antimicrobial compound was extracted from the isolate using various solvents and the antimicrobial efficacies were tested against bacterial and fungal pathogens. In addition, in vitro optimization of parameters for the antimicrobial compound production revealed that the suitable pH as 7–8, the period of incubation as 9 days, temperature (30°C), salinity (2%), and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch–casein medium.  相似文献   
95.
The availability and uptake of Cd by lettuce (Lactuca sativa L.) in two common tropical soils (before and after liming) were studied in order to derive human health-based risk soil concentration. Cadmium concentrations ranging from 1 to 12 mg kg?1 were added to samples from a clayey Oxisol and a sandy-loam Ultisol under glasshouse conditions. After incubation, a soil sample was taken from each pot, the concentration of Cd in the soil was determined, lettuce was grown during 36 d, and the edible parts were harvested and analyzed for Cd. A positive linear correlation was observed between total soil Cd and the Cd concentration in lettuce. The amount of Cd absorbed by lettuce grown in the Ultisol was about twice the amount absorbed in the Oxisol. Liming increased the soil pH and slightly reduced Cd availability and uptake. CaCl2 extraction was better than DTPA to reflect differences in binding strength of Cd between limed and unlimed soils. Risk Cd concentrations in the Ultisol were lower than in the Oxisol, reflecting the greater degree of uptake from the Ultisol. The derived risk Cd values were dependent on soil type and the exposure scenario.  相似文献   
96.
This study was done to determine the concentration of PAHs in urban soil of Delhi (India). Surface top soil (up to 10 cm depth) samples were collected from four different sampling sites including industrial, roadside, residential, and agricultural areas of Delhi and 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were evaluated. Total PAH concentrations at industrial, roadside, residential, and agricultural sites were 11.46 ± 8.39, 6.96 ± 4.82, 2.12 ± 1.12, and 1.55 ± 1.07 mg/kg (dry weight), respectively, with 3–7 times greater concentrations in industrial and roadside soils than that in residential and agricultural soils. The PAH pattern was dominated by 4- and 5-ring PAHs (contributing >50% to the total PAHs) at industrial and roadside sites with greater concentration of fluoranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]anthracene, benzo[ghi]perylene, and pyrene, whereas, residential and agricultural sites showed a predominance of low molecular weight 2- and 3-ring PAHs (fluoranthene, acenaphthene, naphthalene, chrysene, and anthracene). Isomeric pair ratios suggested biomass combustion and fossil fuel emissions as the main sources of PAHs. The toxic equivalency factors (TEFs) showed that carcinogenic potency (benzo[a]pyrene-equivalent concentration (B[a]Peq) of PAH load in industrial and roadside soils was ~10 and ~6 times greater than the agricultural soil.  相似文献   
97.
长江口冲积岛植物群落演替现状   总被引:1,自引:1,他引:0  
宋国元  赵敏  曹同 《植物研究》2008,28(1):114-123
长江口冲积岛(崇明、横沙、长兴、九段沙)发育至今,生物、非生物环境因子起着重要作用。其中,成岛年龄、高程、土壤种类、土壤养分、土壤含盐量、土壤pH值等影响着冲积岛植物群落的形成、定居与演替。在多年野外调查基础上,本文以时间跨度,运用等差序列排序,阐述了冲积岛植物群落的植物多样性,记录并预测了历年冲积岛植物数量,采用典范对应分析(CCA)二维排序方法,对冲积岛多种生境下植物群落的演替现状和所适应的环境因子进行了分析,运用植物样方调查数据,对个别群落间的竞争作了生产量、生境等分析,为研究长江口冲积岛生态系统提供了基础资料。  相似文献   
98.
Surveys (in 2002 and 2003) were performed for fungal endophytes in roots of 24 plant species growing at 12 sites (coastal and inland soils, both sandy soils and salt marshes) under either water or salt stress in the Alicante province (Southeast Spain). All plant species examined were colonized by endophytic fungi. A total of 1830 fungal isolates were obtained and identified by morphological and molecular [internal transcribed spacer (ITS) and translation elongation factor-1alpha gene region (TEF-1alpha) sequencing] techniques. One hundred and forty-two fungal species were identified, belonging to 57 genera. Sterile mycelia were assigned to 177 morphospecies. Fusarium and Phoma species were the most frequent genera, followed by Aspergillus, Alternaria and Acremonium. Fungal root endophytic communities were influenced by the soil type where their respective host plants grew, but not by location (coastal or inland sites). Fusarium oxysporum, Aspergillus fumigatus and Alternaria chlamydospora contributed most to the differences found between endophytic communities from sandy and saline soils. Host preference was found for three Fusarium species studied. Fusarium oxysporum and Fusarium solani were especially isolated from plants of the family Leguminosae, while Fusarium equiseti showed a preference for Lygeum spartum (Gramineae). In some cases, specificity could be related to intra-specific variability as shown by sequencing of the TEF-1alpha in the genus Fusarium.  相似文献   
99.
Wetlands are large carbon pools and play important roles in global carbon cycles as natural carbon sinks. This study analyzes the variation of total soil carbon with depth in two temperate (Ohio) and three tropical (humid and dry) wetlands in Costa Rica and compares their total soil C pool to determine C accumulation in wetland soils. The temperate wetlands had significantly greater (P < 0.01) C pools (17.6 kg C m−2) than did the wetlands located in tropical climates (9.7 kg C m−2) in the top 24 cm of soil. Carbon profiles showed a rapid decrease of concentrations with soil depth in the tropical sites, whereas in the temperate wetlands they tended to increase with depth, up to a maximum at 18–24 cm, after which they started decreasing. The two wetlands in Ohio had about ten times the mean total C concentration of adjacent upland soils (e.g., 161 g C kg−1 were measured in a central Ohio isolated forested wetland, and 17 g C kg−1 in an adjacent upland site), and their soil C pools were significantly higher (P < 0.01). Among the five wetland study sites, three main wetland types were identified – isolated forested, riverine flow-through, and slow-flow slough. In the top 24 cm of soil, isolated forested wetlands had the greatest pool (10.8 kg C m−2), significantly higher (P < 0.05) than the other two types (7.9 kg C m−2 in the riverine flow-though wetlands and 8.0 kg C m−2 in a slowly flowing slough), indicating that the type of organic matter entering into the system and the type of wetland may be key factors in defining its soil C pool. A riverine flow-through wetland in Ohio showed a significantly higher C pool (P < 0.05) in the permanently flooded location (18.5 kg C m−2) than in the edge location with fluctuating hydrology, where the soil is intermittently flooded (14.6 kg C m−2).  相似文献   
100.
European earthworms are colonizing worm-free hardwood forests across North America. Leading edges of earthworm invasion in forests of northern Minnesota provide a rare opportunity to document changes in soil characteristics as earthworm invasions are occurring. Across leading edges of earthworm invasion in four northern hardwood stands, increasing total earthworm biomass was associated with rapid disappearance of the O horizon. Concurrently, the thickness, bulk density and total soil organic matter content of the A horizon increased, and it’s percent organic matter and fine root density decreased. Different earthworm species assemblages influenced the magnitude and type of change in these soil parameters. Soil N and P availability were lower in plots with high earthworm biomass compared to plots with low worm biomass. Decreases in soil nitrogen availability associated with high earthworm biomass were reflected in decreased foliar nitrogen content for Carex pensylvanica, Acer saccharum and Asarum canadense but increased foliar N for Athyrium felix-femina. Overall, high earthworm biomass resulted in increased foliar carbon to nitrogen ratios. The effects of earthworm species assemblages on forest soil properties are related to their feeding and burrowing habits in addition to effects related to total biomass. The potential for large ecosystem consequences following exotic earthworm invasion has only recently been recognized by forest ecologists. In the face of rapid change and multiple pressures on native forest ecosystems, the impacts of earthworm invasion on forest soil structure and function must be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号