首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   65篇
  国内免费   13篇
  2024年   2篇
  2023年   13篇
  2022年   38篇
  2021年   26篇
  2020年   31篇
  2019年   32篇
  2018年   32篇
  2017年   24篇
  2016年   20篇
  2015年   43篇
  2014年   24篇
  2013年   26篇
  2012年   10篇
  2011年   21篇
  2010年   12篇
  2009年   12篇
  2008年   12篇
  2007年   11篇
  2006年   15篇
  2005年   21篇
  2004年   22篇
  2003年   16篇
  2002年   18篇
  2001年   9篇
  2000年   14篇
  1999年   11篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有593条查询结果,搜索用时 984 毫秒
111.
The aspartyl protease BACE1 (BACE) has emerged as an appealing target for reduction of amyloid-β in Alzheimer's disease. The clinical fate of active-site BACE inhibitors may depend on potential side effects related to enzyme and substrate selectivity. One strategy to reduce this risk is through development of allosteric inhibitors that interact with and modulate the Loop F region unique to BACE1. Previously, a BACE-inhibiting antibody (Ab) was shown by co-crystallization to bind and induce conformational changes of Loop F, resulting in backbone perturbations at the distal S6 and S7 subsites, preventing proper binding of a long APP-like substrate to BACE and inhibiting its cleavage. In an effort to discover small Loop F-interacting molecules that mimic the Ab inhibition, we evaluated a peptide series with a YPYF(I/L)P(L/Y) motif that was reported to bind a BACE exosite. Our studies show that the most potent inhibitor from this series, peptide 65007, has a similar substrate cleavage profile to the Ab and reduces sAPPβ levels in cell models and primary neurons. As our modeling indicates, it interacts with the Loop F region causing a conformational shift of the BACE protein backbone near the distal subsites. The peptide-bound enzyme adopts a conformation that closely overlays with the crystal structure (PDB: 3R1G) from Ab binding. Importantly, peptide 65007 appears to be BACE substrate and enzyme selective, showing little inhibition of NRG1, PSGL1, CHL1, or Cat D. Thus, peptide 65007 is a promising lead for discovery of Loop F-interacting small-molecule mimetics as allosteric inhibitors of BACE.  相似文献   
112.
Several classes of ligands for Protease-Activated Receptors (PARs) have shown impressive anti-inflammatory and cytoprotective activities, including PAR2 antagonists and the PAR1-targeting parmodulins. In order to support medicinal chemistry studies with hundreds of compounds and to perform detailed mode-of-action studies, it became important to develop a reliable PAR assay that is operational with endothelial cells, which mediate the cytoprotective effects of interest. We report a detailed protocol for an intracellular calcium mobilization assay with adherent endothelial cells in multiwell plates that was used to study a number of known and new PAR1 and PAR2 ligands, including an alkynylated version of the PAR1 antagonist RWJ-58259 that is suitable for the preparation of tagged or conjugate compounds. Using the cell line EA.hy926, it was necessary to perform media exchanges with automated liquid handling equipment in order to obtain optimal and reproducible antagonist concentration-response curves. The assay is also suitable for study of PAR2 ligands; a peptide antagonist reported by Fairlie was synthesized and found to inhibit PAR2 in a manner consistent with reports using epithelial cells. The assay was used to confirm that vorapaxar acts as an irreversible antagonist of PAR1 in endothelium, and parmodulin 2 (ML161) and the related parmodulin RR-90 were found to inhibit PAR1 reversibly, in a manner consistent with negative allosteric modulation.  相似文献   
113.
Immunoglobulin Binding Protein (BiP) is a chaperone and molecular motor belonging to the Hsp70 family, involved in the regulation of important biological processes such as synthesis, folding and translocation of proteins in the Endoplasmic Reticulum. BiP has two highly conserved domains: the N‐terminal Nucleotide‐Binding Domain (NBD), and the C‐terminal Substrate‐Binding Domain (SBD), connected by a hydrophobic linker. ATP binds and it is hydrolyzed to ADP in the NBD, and BiP's extended polypeptide substrates bind in the SBD. Like many molecular motors, BiP function depends on both structural and catalytic properties that may contribute to its performance. One novel approach to study the mechanical properties of BiP considers exploring the changes in the viscoelastic behavior upon ligand binding, using a technique called nano‐rheology. This technique is essentially a traditional rheology experiment, in which an oscillatory force is directly applied to the protein under study, and the resulting average deformation is measured. Our results show that the folded state of the protein behaves like a viscoelastic material, getting softer when it binds nucleotides‐ ATP, ADP, and AMP‐PNP‐, but stiffer when binding HTFPAVL peptide substrate. Also, we observed that peptide binding dramatically increases the affinity for ADP, decreasing it dissociation constant (KD) around 1000 times, demonstrating allosteric coupling between SBD and NBD domains.  相似文献   
114.
不同有机磷酸酯磷酰化乙酰胆碱酯酶活性中心的构象差异   总被引:2,自引:0,他引:2  
通过观察2位肟化合物HI-6和HGG-42及它们的4位胎异构体对不同有机磷毒剂抑制的AChE的重活化作用发现塔崩、梭曼、沙林等有机磷毒剂磷酰化的AChE活性中心的构象可能存在着明显差异;又从变构剂C10和丙吡啶对TMB4重活化这几种毒剂磷酰化AChE的影响中证实塔崩磷酰化AChE活性中心构象与沙林、梭曼和VX3种毒剂磷酰化的AChE明显不同.  相似文献   
115.
Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing antiinsect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion α-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides.  相似文献   
116.
Limited digestion of fructose 1,6-bisphosphatase with subtilisin produces an S-peptide with an about 60-residue peptide fragment that is non-covalently associated with the enzyme. The 60-residue peptide fragment con-sists of the most part of allosteric site for AMP binding. It could be separated from S-protein by gel filtration with a Sephadex G-75 column equilibrated with 9% formic acid. According to X-ray diffraction results the S-peptide consists of two α-helices without β-strand and the α-helix content is about 60% in the 60-residue-peptide fragment. When the enzyme is subjected to limited proteolysis with subtilisin, the secondary structure of the enzyme does not show a de-tectable change in CD spectrum. The CD spectra of the isolated S-peptide were measured under different concentra-tions. In the absence of GuHCl, S-peptide had 30% a-helix and 38.5% turn-like structure but had no β-strand, sug-gesting that the N-terminal 60-residue fragment, which is synthesized initially by ribosome, would fo  相似文献   
117.
The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50 = 26 ± 6 μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2–4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer’s disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.  相似文献   
118.
Cystathionine β-synthase (CBS) is a key enzyme in human (patho)physiology with a central role in hydrogen sulfide metabolism. The enzyme is composed of a pyridoxal 5′-phosphate-binding catalytic domain, flanked by the following two domains: a heme-binding N-terminal domain and a regulatory C-terminal domain binding S-adenosyl-l-methionine (AdoMet). CO or NO binding at the ferrous heme negatively modulates the enzyme activity. Conversely, AdoMet binding stimulates CBS activity. Here, we provide experimental evidence for a functional communication between the two domains. We report that AdoMet binding significantly enhances CBS inhibition by CO. Consistently, we observed increased affinity (∼5-fold) and faster association (∼10-fold) of CO to the ferrous heme at physiological AdoMet concentrations. NO binding to reduced CBS was also enhanced by AdoMet, although to a lesser extent (∼2-fold higher affinity) as compared with CO. Importantly, CO and NO binding was unchanged by AdoMet in a truncated form of CBS lacking the C-terminal regulatory domain. These unprecedented observations demonstrate that CBS activation by AdoMet puzzlingly sensitizes the enzyme toward inhibition by exogenous ligands, like CO and NO. This further supports the notion that CBS regulation is a complex process, involving the concerted action of multiple physiologically relevant effectors.  相似文献   
119.
Vertebrates have three isoforms of class V myosin (Myo5), Myo5a, Myo5b, and Myo5c, which are involved in transport of multiple cargoes. It is well established that the motor functions of Myo5a and Myo5b are regulated by a tail inhibition mechanism. Here we found that the motor function of Myo5c was also inhibited by its globular tail domain (GTD), and this inhibition was abolished by high Ca2+, indicating that the tail inhibition mechanism is conserved in vertebrate Myo5. Interestingly, we found that Myo5a-GTD and Myo5c-GTD were not interchangeable in terms of inhibition of motor function, indicating isoform-specific interactions between the GTD and the head of Myo5. To identify the isoform-specific interactions, we produced a number of Myo5 chimeras by swapping the corresponding regions of Myo5a and Myo5c. We found that Myo5a-GTD, with its H11-H12 loop being substituted with that of Myo5c, was able to inhibit the ATPase activity of Myo5c and that Myo5a-GTD was able to inhibit the ATPase activity of Myo5c-S1 and Myo5c-HMM only when their IQ1 motif was substituted with that of Myo5a. Those results indicate that the H11-H12 loop in the GTD and the IQ1 motif in the head dictate the isoform-specific interactions between the GTD and head of Myo5. Because the IQ1 motif is wrapped by calmodulin, whose conformation is influenced by the sequence of the IQ1 motif, we proposed that the calmodulin bound to the IQ1 motif interacts with the H11-H12 loop of the GTD in the inhibited state of Myo5.  相似文献   
120.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号