首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   70篇
  国内免费   11篇
  628篇
  2024年   2篇
  2023年   17篇
  2022年   40篇
  2021年   25篇
  2020年   31篇
  2019年   32篇
  2018年   33篇
  2017年   24篇
  2016年   20篇
  2015年   41篇
  2014年   24篇
  2013年   27篇
  2012年   10篇
  2011年   18篇
  2010年   13篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   16篇
  2005年   18篇
  2004年   21篇
  2003年   15篇
  2002年   17篇
  2001年   12篇
  2000年   14篇
  1999年   12篇
  1998年   10篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1991年   3篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
21.
Burak Erman 《Proteins》2013,81(7):1097-1101
Fluctuations of the distance between a pair of residues i and j may be correlated with the fluctuations of the distance between another pair k and l. In this case, information may be transmitted among these four residues. Allosteric activity is postulated to proceed through such correlated paths. In this short communication a fast method for calculating correlations among all possible pairs ij and kl leading to a pathway of correlated residues of a protein is proposed. The method is based on the alpha carbon centered Gaussian Network Model. The model is applied to Glutamine Amidotransferase and pathways of allosteric activity are identified and compared with literature. Proteins 2013; 81:1097–1101. © 2013 Wiley Periodicals, Inc.  相似文献   
22.
This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.  相似文献   
23.
Riboswitches are RNA molecules that regulate gene expression using conformation change, affected by binding of small molecule ligands. Although a number of ligand‐bound aptamer complex structures have been solved, it is important to know ligand‐free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, we use dynamics simulations on a series of models to characterize the ligand‐free and ligand‐bound aptamer domain of the c‐di‐GMP class I (GEMM‐I) riboswitch. The results revealed that the ligand‐free aptamer has a stable state with a folded P2 and P3 helix, an unfolded P1 helix and open binding pocket. The first Mg ions binding to the aptamer is structurally favorable for the successive c‐di‐GMP binding. The P1 helix forms when c‐di‐GMP is successive bound. Three key junctions J1/2, J2/3 and J1/3 in the GEMM‐I riboswitch contributing to the formation of P1 helix have been found. The binding of the c‐di‐GMP ligand to the GEMM‐I riboswitch induces the riboswitch's regulation through the direct allosteric communication network in GEMM‐I riboswitch from the c‐di‐GMP binding sites in the J1/2 and J1/3 junctions to the P1 helix, the indirect ones from those in the J2/3 and P2 communicating to P1 helix via the J1/2 and J1/3 media.  相似文献   
24.
The human extracellular Ca(2+)-sensing receptor (CaR), a member of the G protein-coupled receptor family 3, plays a key role in the regulation of extracellular calcium homeostasis. It is one of just a few G protein-coupled receptors with a large number of naturally occurring mutations identified in patients. In contrast to the small sizes of its agonists, this large dimeric receptor consists of domains with topologically distinctive orthosteric and allosteric sites. Information derived from studies of naturally occurring mutations, engineered mutations, allosteric modulators and crystal structures of the agonist-binding domain of homologous type 1 metabotropic glutamate receptor and G protein-coupled rhodopsin offers new insights into the structure and function of the CaR.  相似文献   
25.
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alphabeta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alphabeta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alphabeta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin (as an allosterically acting 'competitive' antagonist) binds to this residue.  相似文献   
26.
Gunasekaran K  Ma B  Nussinov R 《Proteins》2004,57(3):433-443
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.  相似文献   
27.
AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.  相似文献   
28.
The three-dimensional structure of the large subunit of the first member of a class Ib ribonucleotide reductase, R1E of Salmonella typhimurium, has been determined in its native form and together with three allosteric effectors. The enzyme contains the characteristic ten-stranded alpha/beta-barrel with catalytic residues at a finger loop in its center and with redox-active cysteine residues at two adjacent barrel strands. Structures where the redox-active cysteine residues are in reduced thiol form and in oxidized disulfide form have been determined revealing local structural changes. The R1E enzyme differs from the class Ia enzyme, Escherichia coli R1, by not having an overall allosteric regulation. This is explained from the structure by differences in the N-terminal domain, which is about 50 residues shorter and lacks the overall allosteric binding site. R1E has an allosteric substrate specificity regulation site and the binding site for the nucleotide effectors is located at the dimer interface similarly as for the class Ia enzymes. We have determined the structures of R1E in the absence of effectors and with dTTP, dATP and dCTP bound. The low affinity for ATP at the specificity site is explained by a tyrosine, which hinders nucleotides containing a 2'-OH group to bind.  相似文献   
29.
30.
Demir O  Doğan I 《Chirality》2003,15(3):242-250
The thermally interconvertible diastereomers of the (5S)-methyl-3-(o-aryl)-2,4-oxazolidinediones were synthesized and their conformers studied by (1)H NMR and HPLC. The barriers to rotation about the N-C(aryl) bond were found to be very much solvent dependent. For the o-fluoro oxazolidinedione, difference in barriers to rotation in deuterated methanol and deuterated chloroform amounted to 34 kJ/mol. ortho-Bromo substitution increased the barrier to rotation up to 100 kJ/mol in ethanol, which enabled the analytical separation of the diastereomers and observation of the thermodynamic enrichment of the S-P conformer by HPLC. In CDCl(3) by (1)H NMR, on the other hand, a barrier of only 89 kJ/mol was determined. The S-M and S-P conformers of the diastereomers of o-methyl, alpha-naphthyl and o-iodo derivatives have been assigned by NOESY experiments and the kinetic and thermodynamic constants for the interconversion between the S-M and S-P conformers were determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号