首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   10篇
  国内免费   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有95条查询结果,搜索用时 156 毫秒
61.
To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.  相似文献   
62.
InSedum rupestre L. a polyploid series (x = 16) occurs in which aneuploid chromosome numbers and odd levels of ploidy prevail. The most common and widely distributed cytotype,S. rupestre subsp.rupestre, is 2n = 112. Plants resemblingS. rupestre subsp.rupestre can be obtained by hybridizing the tetraploid cytotypes ofS. forsterianum Sm. (2n = 48) andS. rupestre subsp.erectum 't Hart (2n = 64). Comparison of these artificial hybrids with their parents and a large number of plants ofS. rupestre subsp.rupestre (2n = 112) from nature showed thatS. rupestre subsp.rupestre and the artificial hybrids are morphologically indistinguishable, and intermediate betweenS. forsterianum andS. rupestre subsp.erectum. MorphologicallyS. rupestre subsp.rupestre is closer to subsp.erectum than toS. forsterianum. Chloroplast DNA restriction patterns ofS. rupestre subsp.rupestre, however, resembleS. forsterianum more closely. The combined results of the hybridization experiments, the analysis of the cpDNA restriction patterns, and the morphological variation indicate the allopolyploid origin ofS. rupestre subsp.rupestre. Natural hybrids inSedum (Crassulaceae) 4.  相似文献   
63.
The genus Elymus L. in the tribe Triticeae (Poaceae) includes economically and ecologically important forage grasses. The genus contains the pivotal St genome from Pseudoroegneria in combination with other genomes in the tribe. Many Elymus species are tetraploids containing the StY genomes. It is thought that polyploidization characterizes the speciation of the genus in which the Y is considered as another key genome. Based on data from cytological, genome in situ hybridization, and molecular studies, we hypothesized an endo-allopolyploidy origin of the StY-genome species from the autotetraploid Pseudoroegneria species. To test this hypothesis, we amplified, cloned, and sequenced five single-copy nuclear genes (i.e., alcohol dehydrogenase 1–3, Adh1–Adh3, RNA polymerase II, Rpb2; and Waxy) from Elymus, Pseudoroegneria, and Hordeum species. The phylogenetic trees constructed based on the sequencing analyses of all genes indicated that diploid and autotetraploid Pseudoroegneria species were closely related, although with considerable genetic variation in tetraploids. In addition, the StY-genome Elymus species tended to have a close relationship with the diploid and autotetraploid Pseudoroegneria species, although different phylogenetic relationships among the gene trees were detected. These results indicated that the StY-genome species may have an autotetraploid origin and experienced recurrent hybridization. The complex St genomes in Pseudoroegneria in the polyploid state may gain more opportunities for within-species differentiation and recurrent hybridization. As a result, series modified versions of St genomes evolved into the StY genomes in some Elymus species.  相似文献   
64.
DNA sequence data from the low‐copy nuclear genes waxy (GBSSI) and leafy were compared with plastid and ITS sequence data from prior studies to reconstruct phylogenetic relationships in the Wintergreen Group of tribe Gaultherieae (Ericaceae). We conducted phylogenetic analysis with 102 species that includes representatives of all 15 major clades previously identified within the Wintergreen Group and that together span its circum‐Pacific distribution. Results yielded two distinct homeologous copies of waxy for two of the clades, each in widely separated parts of the tree. It also yielded two copies of leafy for one of the clades; only one copy of leafy was found for the other clade, but it was placed in the same major clade as its waxy counterpart and well away from its placement in a prior plastid analysis. A combined four‐locus (waxy, leafy, ITS and plastid data) phylogenetic analysis of all available relevant data placed the copies of each of the clades in two distinct positions in the phylogeny with strong overall statistical support. In combination with evidence from morphology, reproductive biology and cytology, the results suggest that these clades arose through allopolyploid hybridization between lineages deep in the phylogeny but relatively close geographically. This finding confirms previous assumptions that hybridization has played an important role in the evolution of the Gaultherieae.  相似文献   
65.
66.
Common wheat (Triticum aestivum L., AABBDD genome) is thought to have emerged through natural hybridization between Triticum turgidum L. (AABB genome) and Aegilops tauschii Coss. (DD genome). Hybridization barriers and doubling of the trihaploid F1 hybrids’ genome (ABD) via unreduced gamete fusion had key roles in the process. However, how T. turgidum, the maternal progenitor, was involved in these mechanisms remains unknown. An artificial cross‐experiment using 46 cultivated and 31 wild T. turgidum accessions and a single Ae. tauschii tester with a very short genetic distance to the common wheat D genome was conducted. Cytological and quantitative trait locus analyses of F1 hybrid genome doubling were performed. The crossability and ability to cause hybrid inviability did not greatly differ between the cultivars and wild accessions. The ability to cause hybrid genome doubling was higher in the cultivars. Three novel T. turgidum loci for hybrid genome doubling, which influenced unreduced gamete production in F1 hybrids, were identified. Cultivated T. turgidum might have increased the probability of the emergence of common wheat through its enhanced ability to cause genome doubling in F1 hybrids with Ae. tauschii. The ability enhancement might have involved alterations at a relatively small number of loci.  相似文献   
67.
Kosteletzkya s.s. is a genus of 17 species (excluding the endemic species of Madagascar), found in the New World, continental Africa, Madagascar, and Southeast Asia. Recent chromosome counts revealed diploid, tetraploid, and hexaploid species. To estimate the history of the genus, we sequenced nuclear and plastid loci for nearly all Kosteletzkya spp., in the majority of cases, with multiple accessions per species. The African species form a paraphyletic grade relative to a New World clade. Polyploidy has occurred only in some African species, resulting in the relatively ancient formation of one putative autotetraploid species (K. semota), one recent allotetraploid species (K. borkouana), two relatively ancient allotetraploid species (K. begoniifolia and K. rotundalata) and one recent allohexaploid species (K. racemosa). Our inferences regarding the hypothesized parentage of the polyploids mostly corroborate previous work based on chromosome‐pairing patterns in artificial hybrids, highlighting the utility of these complementary data sources. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 421–435.  相似文献   
68.
Background and Aims The genus Rosa (150–200 species) is widely distributed throughout temperate and sub-tropical habitats from the northern hemisphere to tropical Asia, with only one tropical African species. In order to better understand the evolution of roses, this study examines infrageneric relationships with respect to conventional taxonomy, considers the extent of allopolyploidization and infers macroevolutionary processes that have led to the current distribution of the genus.Methods Phylogenetic relationships among 101 species of the genus Rosa were reconstructed using sequences from the plastid psbA-trnH spacer, trnL intron, trnL-F spacer, trnS-G spacer and trnG intron, as well as from nuclear glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which was used to identify putative allopolyploids and infer their possible origins. Chloroplast phylogeny was used to estimate divergence times and reconstruct ancestral areas.Key Results Most subgenera and sections defined by traditional taxonomy are not monophyletic. However, several clades are partly consistent with currently recognized sections. Allopolyploidy seems to have played an important role in stabilizing intersectional hybrids. Biogeographic analyses suggest that Asia played a central role as a genetic reservoir in the evolution of the genus Rosa.Conclusions The ancestral area reconstruction suggests that despite an early presence on the American continent, most extant American species are the results of a later re-colonization from Asia, probably through the Bering Land Bridge. The results suggest more recent exchanges between Asia and western North America than with eastern North America. The current distribution of roses from the Synstylae lineage in Europe is probably the result of a migration from Asia approx. 30 million years ago, after the closure of the Turgai strait. Directions for a new sectional classification of the genus Rosa are proposed, and the analyses provide an evolutionary framework for future studies on this notoriously difficult genus.  相似文献   
69.
Dactylorhiza majalis subsp. sphagnicola is an allotetraploid marsh orchid derived from parents closely similar to present‐day D. incarnata and the western European form of D. maculata subsp. maculata, suggesting that it has a postglacial origin. It extends from northwestern continental Europe into areas formerly covered by the Weichselian ice sheet in mid‐Scandinavia. Here, we studied the variation at both the plastid and nuclear marker systems to describe the geographical variation in subsp. sphagnicola and its evolutionary history. We investigated whether subsp. sphagnicola is affected by secondary hybridization and gene flow from its parental lineages or from other allotetraploid marsh orchids, and we also compared subsp. sphagnicola with other allotetraploids of similar origins. We analysed 492 plants from 50 populations. Thirty‐seven populations were collected as potential Dactylorhiza majalis subsp. sphagnicola, five as subsp. sesquipedalis (D. elata), one as D. elata subsp. brennensis, one as subsp. calcifugiens, one as subsp. occidentalis and the remaining five as populations with some affinity to subsp. lapponica (including D. traunsteineri). All populations were analysed for plastid haplotypes and nuclear internal transcribed spacer (ITS) allele frequencies, and a subset of 43 populations was analysed for five nuclear microsatellite loci. Dactylorhiza majalis subsp. sphagnicola was dominated by a single plastid haplotype that was also dominant in western European D. maculata subsp. maculata, and most of the alternative haplotypes differed by only one mutation from the dominant one. There was more variation in nuclear microsatellites and ITS, and the variation was geographically structured in these markers. Subspecies occidentalis and calcifugiens shared haplotypes with subsp. sphagnicola, whereas subsp. sesquipedalis and brennensis had other haplotypes. Dactylorhiza majalis subsp. sphagnicola may have a postglacial origin within its present continental distribution. It has incorporated genetic material from D. maculata subsp. maculata by secondary hybridization and introgression, and some northern populations have assimilated strongly divergent haplotypes from the northeastern form of D. maculata subsp. maculata. Subspecies sphagnicola has also evolved morphologically divergent local populations in the north that do not differ from the typical populations in genetic markers. It may form mixed populations with other allotetraploid subspecies of D. majalis and, at least at one site, it has become integrated with subsp. lapponica, demonstrating that independently derived allotetraploids may contribute to a common gene pool. Subspecies calcifugiens seems to be derived from subsp. sphagnicola, and further studies based on a larger sample may confirm that it is better recognized as a variety. The so‐called D. elata subsp. brennensis is of hybrid origin and combines markers from subsp. sesquipedalis with markers from the D. majalis core complex, possibly subsp. majalis. The new combination Dactylorhiza majalis subsp. sesquipedalis (Willd.) H.A.Pedersen & Hedrén comb. nov. is provided. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 174–193.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号