首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   78篇
  国内免费   196篇
  2024年   8篇
  2023年   22篇
  2022年   23篇
  2021年   32篇
  2020年   39篇
  2019年   55篇
  2018年   23篇
  2017年   38篇
  2016年   41篇
  2015年   36篇
  2014年   34篇
  2013年   59篇
  2012年   28篇
  2011年   31篇
  2010年   20篇
  2009年   43篇
  2008年   41篇
  2007年   31篇
  2006年   41篇
  2005年   37篇
  2004年   18篇
  2003年   28篇
  2002年   20篇
  2001年   21篇
  2000年   19篇
  1999年   14篇
  1998年   27篇
  1997年   15篇
  1996年   15篇
  1995年   16篇
  1994年   14篇
  1993年   12篇
  1992年   10篇
  1991年   10篇
  1990年   13篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   11篇
  1985年   11篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1971年   1篇
排序方式: 共有1006条查询结果,搜索用时 15 毫秒
51.
It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi‐ohmic contact via solution‐processed alkali hydroxide (AOH) interlayers on top of n‐type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C60) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C60 highest occupied molecular orbital for AOH‐modified AZO contacts. These novel interfacial gap states are a result of ground‐state electron transfer from the metal hydroxide‐functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n‐doped (metal‐like) interfacial molecular layer. Furthermore, the strong “light‐soaking” effect is no longer observed in devices with a AOH interface.  相似文献   
52.
以杜仲干叶为原料,经稀碱和绿色木霉联合处理以除去杜仲表面覆盖的角质层,同时洗脱一些可溶性杂质,并且破坏杜仲叶的细胞壁与纤维结构,再以石油醚作为提取溶剂,得到粗胶再经丙酮浸洗获得杜仲精胶。用0.45%NaOH在75℃下除去杜仲叶表面的角质层,并且同时脱除一些可溶性活性成分(如:多糖、黄酮类、京尼平苷等),之后得杜仲叶干燥,利用绿色木霉去破坏杜仲叶的细胞壁与纤维结构,在85℃条件下以石油醚作为提取溶剂提取杜仲胶。最后,经测得未处理前杜仲叶中的杜仲胶的含量为1.78%,0.45%NaOH稀碱预处理后含量为3.16%,绿色木霉发酵后含量为4.36%。预处理前,有机溶剂一次提取率为0.73%,纯度为83.7%。稀碱与真菌联合预处理后一次提取率为2.85%,纯度为96.6%。本工艺以稀碱与绿色木霉共同作用,减少了有机溶剂的用量,与传统工艺相比,更加的绿色环保,安全有效,为杜仲胶的提取提供了科学有效的依据。  相似文献   
53.
Alkali metal–O2 batteries, by coupling high‐capacity alkali metal anodes with gaseous oxygen, possess extremely high gravimetric energy density that is comparable to gasoline and are potential energy storage technologies beyond lithium–ion batteries. The development of alkali metal–O2 batteries has achieved great progress in recent years, from materials to prototype devices and on fundamental mechanisms. The stability of alkali metal–O2 batteries is still poor, however, leading to a huge gap between laboratory research and commercial applications. A series of parasitic reactions result in the instability, which occur during electrochemical discharging and charging. The ubiquitous active oxygen species attack both the organic electrolyte and the carbon cathode, triggering various parasitic reactions. Meanwhile, dendrite growth and volume expansion upon repeated plating/stripping and O2 crossover severely limit the reversibility of alkali metal anodes. Here, an overview of the strategies against these issues is given to improve the stability of nonaqueous alkali metal–O2 batteries, which is discussed from three aspects: air cathodes, alkali metal anodes, and aprotic electrolytes. Furthermore, perspectives for future research of stable alkali metal–O2 batteries are outlined.  相似文献   
54.
55.
Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively.  相似文献   
56.
Supplementation with copper (Cu) improves deer antler characteristics, but it could modify meat quality and increase its Cu content to levels potentially harmful for humans. Here, we studied the effects of Cu bolus supplementation by means on quality and composition of sternocephalicus (ST) and rectus abdominis (RA) muscles (n=13 for each one) from yearling male red deer fed with a balanced diet. Each intraruminal bolus, containing 3.4 g of Cu, was administered orally in the treatment group to compare with the control group. Meat traits studied were pH at 24 h postmortem (pH24), colour, chemical composition, cholesterol content, fatty acid (FA) composition, amino acid (AA) profile and mineral content. In addition, the effect of Cu supplementation on mineral composition of liver and serum (at 0 and 90 days of treatment) was analysed. No interactions between Cu supplementation and muscle were observed for any trait. Supplementation with Cu increased the protein content of meat (P<0.01). However, Cu content of meat, liver and serum was not modified by supplementation. In fact, Cu content of meat (1.20 and 1.34 mg/kg for Cu supplemented and control deer, respectively) was much lower in both groups than 5 mg/kg of fresh weight allowed legally for food of animal origin. However, bolus of Cu tended to increase the meat content of zinc and significantly increased (P<0.05) the hepatic contents of sodium and lead. Muscles studied had different composition and characteristics. The RA muscle had significantly higher protein content (P<0.001), monounsaturated FA content (P<0.05) and essential/non-essential AA ratio (P<0.01) but lower pH24 (P<0.01) and polyunsaturated FA content (P=0.001) than the ST muscle. In addition, RA muscle had 14.4% less cholesterol (P=0.001) than ST muscle. Also, mineral profile differed between muscles with higher content of iron, significantly higher (P<0.001) content of zinc and lower content of calcium, magnesium and phosphorus (P<0.05) for ST muscle compared with RA. Therefore, supplementation with Cu modified deer meat characteristics, but it did not increase its concentration to toxic levels, making it a safe practice from this perspective. Despite the lower content of polyunsaturated FA, quality was better for RA than for ST muscle based on its higher content of protein with more essential/non-essential AA ratio and lower pH24 and cholesterol content.  相似文献   
57.
A closed‐loop supply chain (CLSC) is considered not only an important solution for ensuring sustainable exploitation of materials, but also a promising strategy for securing long‐term availability of materials. The latter is especially highlighted in the materials criticality discourse. Critical raw materials (CRMs), being exposed to supply disruptions, create an uncertain operational environment for many industries, particularly for green energy technologies that employ multiple CRMs. However, recycling rates of CRMs are very low and engagement of companies in CLSC for CRM is limited. This study examines factors influencing CLSC for CRM development in photovoltaic panels and wind turbine technologies. The aim is to analyze how the factors manifest themselves in different companies along the supply chain and to identify enabling and bottleneck conditions for implementation of CLSC for CRM. The novelty of the study is twofold: the focus on material rather than product flows, and examination of factors from a multiactor perspective. The evidence obtained suggests that the manufacturing companies and reverse supply‐chain operators engaged in the study take different perspectives (product vs. material) regarding development of CLSC for CRM and thus emphasize different factors. The findings underline the need for interactions between supply‐chain actors, a sound competitive environment for recycling processes, and investment in technologies and infrastructure development if CLSC for CRM is to be developed. The paper provides implications for practitioners and policy makers for implementation of CLSC for CRM, and suggests prospects for further research.  相似文献   
58.
The implementation of global sustainability has gained worldwide attention in recent years. The Organization Environmental Footprint, which encompasses 14 impact categories, is a multicriteria measure of the environmental performance of goods and services provided by an organization from a life cycle perspective. In this article, the focus is on quantifying the Organization Environmental Footprint of a construction company in Spain. By applying an environmentally extended input‐output approach, its total footprint and impacts along the supply chain from two consecutive years were calculated. The results show that the environmental impacts from the second year of implementation were significantly higher than those from the first year. The impact category climate change was found to have experienced the greatest increase from one year to the other, with a 31% increase. This work provides an overview of 14 environmental impact categories of the company assessed, as well as recommendations for the implementation of this indicator in companies and public procurement. This approach could pave the way to shape organizations’ action plans and meet the European environmental challenges.  相似文献   
59.
Stationary batteries are projected to play a role in the electricity system of Switzerland after 2030. By enabling the integration of surplus production from intermittent renewables, energy storage units displace electricity production from different sources and potentially create environmental benefits. Nevertheless, batteries can also cause substantial environmental impacts during their manufacturing process and through the extraction of raw materials. A prospective consequential life cycle assessment (LCA) of lithium metal polymer and lithium‐ion stationary batteries is undertaken to quantify potential environmental benefits and drawbacks. Projections are integrated into the LCA model: Energy scenarios are used to obtain marginal electricity supply mixes, and projections about the battery performances and the recycling process are sourced from the literature. The roles of key parameters and methodological choices in the results are systematically investigated. The results demonstrate that the displacement of marginal electricity sources determines the environmental implications of using batteries. In the reference scenario representing current policy, the displaced electricity mix is dominated by natural gas combined cycle units. In this scenario, the use of batteries generates environmental benefits in 12 of the 16 impact categories assessed. Nevertheless, there is a significant reduction in achievable environmental benefits when batteries are integrated into the power supply system in a low‐carbon scenario because the marginal electricity production, displaced using batteries, already has a reduced environmental impact. The direct impacts of batteries mainly originate from upstream manufacturing processes, which consume electricity and mining activities related to the extraction of materials such as copper and bauxite.  相似文献   
60.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号