首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   145篇
  国内免费   101篇
  2024年   4篇
  2023年   6篇
  2022年   18篇
  2021年   16篇
  2020年   35篇
  2019年   50篇
  2018年   70篇
  2017年   33篇
  2016年   43篇
  2015年   65篇
  2014年   64篇
  2013年   95篇
  2012年   50篇
  2011年   60篇
  2010年   32篇
  2009年   41篇
  2008年   43篇
  2007年   49篇
  2006年   58篇
  2005年   40篇
  2004年   30篇
  2003年   31篇
  2002年   20篇
  2001年   26篇
  2000年   13篇
  1999年   16篇
  1998年   13篇
  1997年   20篇
  1996年   14篇
  1995年   9篇
  1994年   10篇
  1993年   15篇
  1992年   15篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1986年   3篇
  1985年   10篇
  1984年   18篇
  1983年   10篇
  1982年   14篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1974年   8篇
排序方式: 共有1240条查询结果,搜索用时 31 毫秒
61.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   
62.
AimThe main purpose of the present study is assessment of skin dose in breast cancer radiotherapy.BackgroundAccurate assessment of skin dose in radiotherapy can provide useful information for clinical considerations.Materials and methodsA RANDO phantom was irradiated using a 6 MV Siemens Primus linac with medial and tangential radiotherapy fields for simulating breast cancer treatment. Dosimetry was also performed on various positions across the fields using an EBT3 radiochromic film. Similar conditions of measurement on the RANDO phantom including field size, irradiation angle, number of fields, etc. were subsequently simulated via the Monte Carlo N-Particle Transport code (MCNP). Ultimately, dose values for corresponding points from both methods were compared.ResultsConsidering dosimetry using radiochromic films on the RANDO phantom, there were points having underdose and overdose based on the prescribed dose and skin tolerance levels. In this respect, 81.25% and 18.75% of the points had underdose and overdose, respectively. In some cases, several differences were observed between the measurement and the MCNP simulation results associated with skin dose.ConclusionBased on the results of the points which had underdose, it was suggested that a bolus should be used for the given points. With regard to overdose points, it was advocated to consider skin tolerance dose in treatment planning. Differences between the measurement and the MCNP simulation results might be due to voxel size of tally cells in simulations, effect of beam’s angle of incidence, validation time of linac’s head, lack of electronic equilibrium in the build-up region, as well as MCNP tally type.  相似文献   
63.
PurposeThis study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect.MethodsA calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data.ResultsThe radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery.ConclusionsWe described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.  相似文献   
64.
以我国大兴安岭多年冻土区泥炭地常见的3种外生菌根木本植物(细叶沼柳Salix rosmarinifolia、白桦Betula platyphylla和柴桦B.fruticosa)和4种欧石楠菌根木本植物(笃斯越桔Vaccinium uliginosum、狭叶杜香Ledum palustre、甸杜Chamaedaphne calyculata和小叶杜鹃Rhododendron parrifolum)为研究对象,通过315天培养试验测定10和20℃叶片凋落物分解过程中的碳(C)累积矿化量和重量损失,并分析其温度敏感性。结果表明:外生菌根植物叶片凋落物的C矿化量和重量损失在10和20℃均高于欧石楠菌根植物;外生菌根植物凋落物分解过程中C矿化量的温度敏感性系数高于欧石楠菌根植物,但重量损失的温度敏感性系数低于欧石楠菌根植物;在每一培养温度下,C矿化量和重量损失均与凋落物全氮(N)和全磷(P)浓度呈正相关,与C/N和C/P呈负相关;尽管C矿化量的温度敏感性系数与凋落物初始化学组成无显著相关性,但重量损失的温度敏感性系数与凋落物全N和全P浓度呈负相关,与C/N和C/P呈正相关。本研究结果为认识和预测气候变暖及其引起的物种组成变化对北方泥炭地植物凋落物分解的影响提供理论依据。  相似文献   
65.
《Free radical research》2013,47(3-6):353-360
Positive structural identification of the PBN-trichloromethyl spin adduct in vim was accomplished with the use of high pressure liquid chromatography and/or gas chromatography coupled with mass spectrome-try. Both thin layer and liquid chromatography were used to separate a complex mixture of compounds from rat liver extracts treated with CCI, in vitro and in vivo. Deuterated PBN's (PBN-d, text-butyl deuteration, or PBN-d14; both phenyl and tert-butyl deuteration) were also used to aid in the mass spectral analysis of spin adducts from liver extracts of CCI, exposed rat livers, since the rerr-butyl group fragment ion, C4D9+ (m/z = 66) is always present for PBN and PBN spin adducts. In addition, the masses of the ion peaks increase by the amount of deuteration, i.e. an increase of 9 for PBN-d, or PBN-d14 in comparison to normally synthesized PBN.  相似文献   
66.
The ecofriendly ternary blend polymer film was prepared from the chitosan (CH), polylactic acid (PLA) and polyvinyl alcohol (PVA). Immobilization of Candida cylindracea lipase (CCL) was carried out on ternary blend polymer via entrapment methodology. The ternary blend polymer and immobilized biocatalyst were characterized by using N2 adsorption–desorption isotherm, SEM, FTIR, DSC, and (%) water content analysis through Karl Fischer technique. Biocatalyst was then subjected for the determination of practical immobilization yield, protein loading and specific activity. Immobilized biocatalyst was further applied for the determination of biocatalytic activity for N-acylation reactions. Various reaction parameters were studied such as effect of immobilization support (ratio of PLA:PVA:CH), molar ratio (dibutylamine:vinyl acetate), solvent, biocatalyst loading, time, temperature, and orbital speed rotation. The developed protocol was then applied for the N-acylation reactions to synthesize several industrially important acetamides with excellent yields. Interestingly, immobilized lipase showed fivefold higher catalytic activity and better thermal stability than the crude extract lipase CCL. Furthermore various kinetic and thermodynamic parameters were studied and the biocatalyst was efficiently recycled for four successive reuses. It is noteworthy to mention that immobilized biocatalyst was stable for period of 300 days.  相似文献   
67.
Nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas allows the deposition of metal oxides with tunable morphology, structure, density and stoichiometry by a proper control of the plasma plume expansion dynamics. Such versatility can be exploited to produce nanostructured films from compact and dense to nanoporous characterized by a hierarchical assembly of nano-sized clusters. In particular we describe the detailed methodology to fabricate two types of Al-doped ZnO (AZO) films as transparent electrodes in photovoltaic devices: 1) at low O2 pressure, compact films with electrical conductivity and optical transparency close to the state of the art transparent conducting oxides (TCO) can be deposited at room temperature, to be compatible with thermally sensitive materials such as polymers used in organic photovoltaics (OPVs); 2) highly light scattering hierarchical structures resembling a forest of nano-trees are produced at higher pressures. Such structures show high Haze factor (>80%) and may be exploited to enhance the light trapping capability. The method here described for AZO films can be applied to other metal oxides relevant for technological applications such as TiO2, Al2O3, WO3 and Ag4O4.  相似文献   
68.
69.
This study correlates the device performance of organic solar cells and the electronic charge transport within polymer/fullerene films, directly to the optical order of the polymer. The optical order was measured by spectroscopic ellipsometry and evaluated by our previously derived model. We were able to determine the in‐depth distribution of higher and lower ordered poly(3‐hexylthiophene) (P3HT) domains within an [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) matrix. The over the film thickness integrated volume fraction of highly ordered P3HT domains could be directly correlated to the corresponding solar cell device performance. We are able to describe various thermally annealing conditions between room‐temperature and 200 °C.  相似文献   
70.
The surface properties of CuInS2 (CIS) thin‐film solar cell absorbers are investigated by a combination of electron and soft X‐ray spectroscopies. Spatially separated regions of varying colors are observed and identified to be dominated by either CuS or Cu2S surface phases. After their removal by KCN etching, the samples cannot be distinguished by eye and the CIS surface is found to be Cu‐deficient in both regions. However, a significantly more pronounced off‐stoichiometry in the region initially covered by Cu2S can be identified. In this region, the resulting surface band gap is also significantly larger than the EgSurf of the initially CuS‐terminated region. Such variations may represent a hidden parameter which, if overlooked, induces irreproducibility and thus prevents systematic optimization efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号