首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   59篇
  国内免费   58篇
  1203篇
  2024年   4篇
  2023年   18篇
  2022年   10篇
  2021年   11篇
  2020年   27篇
  2019年   49篇
  2018年   25篇
  2017年   46篇
  2016年   32篇
  2015年   32篇
  2014年   46篇
  2013年   60篇
  2012年   28篇
  2011年   32篇
  2010年   24篇
  2009年   41篇
  2008年   48篇
  2007年   50篇
  2006年   47篇
  2005年   40篇
  2004年   36篇
  2003年   30篇
  2002年   29篇
  2001年   36篇
  2000年   22篇
  1999年   28篇
  1998年   13篇
  1997年   15篇
  1996年   18篇
  1995年   24篇
  1994年   23篇
  1993年   18篇
  1992年   14篇
  1991年   16篇
  1990年   21篇
  1989年   20篇
  1988年   5篇
  1987年   16篇
  1986年   19篇
  1985年   12篇
  1984年   23篇
  1983年   4篇
  1982年   15篇
  1981年   17篇
  1980年   8篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1976年   15篇
  1975年   3篇
排序方式: 共有1203条查询结果,搜索用时 0 毫秒
81.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   
82.
Survival of the green alga Scenedesmus acuminatus Lagerh. in complete darkness was studied in axenic batch cultures at 7°C and 22°C for three months. The decrease in cell numbers was insensitive to temperature and slower than the loss of dry weight. However, the lag phase before cells began to lyse was more than twice as long at 7° C than at 22°C. The decline in cellular carbohydrates and proteins occurred in two phases. During the first 3-4 days, the decrease in cellular carbohydrate levels was significantly accelerated and temperature-sensitive. Pyrenoids disappeared within 5 days of darkness. Proteins showed 20-fold higher degradation rates at 22°C than at 7°C during the first 4 days. Thereafter, the rates of carbohydrate and protein decomposition were slow and temperature-independent. By contrast, lipids degraded only little at virtually constant and temperature-insensitive rates over the entire experimental period. After three months of dark incubation, about 40% of the remaining cells had retained their growth potential. However, the lag phase, after which cell division was resumed when exposed to light, increased with the duration of the previous dark period. The decrease in photo synthetic potential, which was more pronounced at 22° C than at 7° C, was apparent both in declining maximum assimilation numbers and maximum quantum yields. Cellular chlorophyll a concentrations in surviving cells decreased only slightly. We conclude that the primary means by which S. acuminatus survives extended dark periods is by reduction of catabolic reactions. This was suggested by the slow loss of cell weight. No evidence of significant heterotrophic acetate uptake was found. The initial temperature-dependence of most observed processes indicates that in natural environments chances for survival of algae are augmented by the prevailing low water temperatures.  相似文献   
83.
Algae as indicators of environmental change   总被引:12,自引:0,他引:12  
Despite an increased awareness by governments and the general public of the need for protecting all types of aquatic habitats, human impacts continue to impair the services that these ecosystems provide. Increased monitoring activities that locus on all major biological compartments are needed to quantify the present condition of Earth's aquatic resources and to evaluate the effectiveness of regulations designed to rehabilitate damaged ecosystems. Algae are an ecologically important group in most aquatic ecosystems but are often ignored as indicators of aquatic ecosystem change. We attribute this situation both to an underappreciation of the utility of algal indicators among non-phycologists and to a lack of standardized methods for monitoring with algae.Because of their nutritional needs and their position at the base of aquatic foodwebs, algal indicators provide relatively unique information concerning ecosystem condition compared with commonly used animal indicators. Algae respond rapidly and predictably to a wide range of pollutants and, thus, provide potentially useful early warning signals of deteriorating conditions and the possible causes. Algal assemblages provide one of the few benchmarks for establishing historical water quality conditions and for characterizing the minimally impacted biological condition of many disturbed ecosystems. Preliminary comparisons suggest that algal indicators are a cost-effective monitoring tool as well.Based on available evidence from field studies, we recommend development of taxonomic indicators based on diatoms (Bacillariophyceae) as a standardized protocol for monitoring ecosystem change. Both population- and community-level indices have inherent strengths, and limitations and information from both levels of biological organization should be utilized in tandem. However, further information concerning species tolerances to a variety of anthropogenic stressors is needed if autecological indices are to be used routinely for monitoring purposes. While functional measures (e.g. productivity) may also prove useful as monitoring tools, further investigation is required to characterize the reliability of alternative methodologies and to assess the consistency of these indicators under varying field conditions.Author for correspondence  相似文献   
84.
The purpose of the present study was to demonstrate that the lysis with the blue color formation was caused by densification of the cyanobacteria, and related events of the species change in the cyanobacteria were induced by the resulting volatile organic compounds (VOCs), particularly β‐cyclocitral. In order to obtain a high cell density of cyanobacteria in the laboratory, a concentration technique (graduated cylinder method) using the buoyancy of the gas vesicles was successfully used. The collected scum contained mainly Dolichospermum spp. and Microcystis, and the dispersed cyanobacteria were concentrated in the surface layer after several hours and the concentration ratio became approximately 10. The concentrated cyanobacteria were gradually lysed, while some of the cyanobacteria sank to the bottom, which finally died and disappeared. This method has the additional advantage that it is possible to visualize the entire lysis process. During the concentration process, β‐cyclocitral and its oxidation products together with β‐ionone were significantly detected. Because β‐cyclocitral was easily oxidized to the corresponding carboxylic acid, the pH of the water in the graduated cylinder decreased to approximately 6. Under favorable conditions, lysis with the blue color from phycocyanin could be observed due to the acid stress. Overall, the results of the present study were consistent with the hypothesis that VOCs were produced when the cyanobacteria are highly dense, and that the lysis with the blue color formation occurs due to the higher density.  相似文献   
85.
86.
Wang S S  Liu Y D  Zou Y D  Li D H 《农业工程》2006,26(8):2443-2448
The carbonic anhydrase (CA) activities were determined in three cyanobacterial species, namely Microcystis aeruginosa Kütz., Microcystis viridis (A.Br.) Lemm, and Microcystis wesenbergii (Kom.) Kom, which were dominant in a lake (Dianchi Lake) subject to major blooms. In more detailed experiments on M. aeruginosa, the effects of inorganic carbon, pH, temperature, nitrogen/phosphorus ratio, glucose, and light intensity on CA activity were also investigated. Because of the relatively alkaline pH value of the culture media for the optimum growth of algal cells, bicarbonate ions were the main form of exogenous inorganic carbon. The results showed that the CA activity of M. aeruginosa was influenced dramatically by the concentration of bicarbonate. Consequently, it was suggested that bicarbonate ions were the main form of exogenous inorganic carbon that M. aeruginosa could utilize. Cultures grown in the dark exhibited CA activity six times higher than that of cells cultured mixotrophically with the addition of glucose. Features of eutrophic water bodies promoted an increase in CA activity, and the resulting higher CA activity would accelerate the utilization of inorganic carbon and favor the growth and blooming of Microcystis spp. in eutrophic lakes. Although the experiments were carried out under controlled experimental conditions, they could provide some basic data that would prove useful for the control of cyanobacterial blooms in nature.  相似文献   
87.
The marine dinoflagellate genus Alexandrium includes a number of species that produce potent neurotoxins responsible for paralytic shellfish poisoning, which in humans may cause muscular paralysis, neurological symptoms and, in extreme cases, death. Because of the genetic diversity of different genera and species, molecular tools may help to detect the presence of target microorganisms in marine field samples. Here we employed a loop-mediated isothermal amplification (LAMP) method for the rapid and simple detection of toxic Alexandrium species. A set of four primers were designed based upon the conserved region of the 5.8S rRNA gene of members of the genus Alexandrium . Using this detection system, toxic Alexandrium genes were amplified and visualized as a ladder-like pattern of bands on agarose gels under isothermal condition within 60 min. The LAMP amplicons were also directly visualized by eye in the reaction tube by the addition of SYBR Green I. This LAMP assay was 10-fold more sensitive than a conventional PCR method with a detection limit of 5 cells per tube when targeting DNA from Alexandrium minutum . The LAMP assay reported here indicates the potential usefulness of the technique as a valuable simple, rapid alternative procedure for the detection of target toxic Alexandrium species during coastal water monitoring.  相似文献   
88.
Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1‐D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m?2 · s?1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m?2 · s?1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m?2 · s?1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m?2 · s?1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.  相似文献   
89.
A field experiment was employed in Florida Bay investigating the response of seagrass epiphyte communities to nitrogen (N) and phosphorus (P) additions. While most of the variability in epiphyte community structure was related to uncontrolled temporal and spatial environmental heterogeneity, P additions increased the relative abundance of the red algae–cyanobacterial complex and green algae, with a concomitant decrease in diatoms. When N was added along with P, the observed changes to the diatoms and the red algae–cyanobacterial complex were in the same direction as P‐only treatments, but the responses were decreased in magnitude. Within the diatom community, species relative abundances, species richness, and diversity responded weakly to nutrient addition. P additions produced changes in diatom community structure that were limited to summer and were stronger in eastern Florida Bay than in the western bay. These changes were consistent with well‐established temporal and spatial patterns of P limitation. Despite the significant change in community structure resulting from P addition, diatom communities from the same site and time, regardless of nutrient treatment, remained more similar to one another than to the diatom communities subject to identical nutrient treatments from different sites and times. Overall, epiphyte communities exhibited responses to P addition that were most evident at the division level.  相似文献   
90.
A microcosm approach was used to test whether: a) growth under unbalanced nutrient conditions (varying N:P ratios) affected the susceptibility of a phytoplankton community including the dinoflagellate Alexandrium catenella (a paralytic shellfish toxin producer) to mesozooplankton grazing, and b) the potential effects of unbalanced nutrient conditions were mediated by changes in toxicity of A. catenella or by other mechanisms. The experimental setup consisted of fifteen 30 l microcosms, filled with water from the Barcelona Harbour and subjected to treatments combining nutrient inputs at three different N:P ratios (Redfield N:P ratio or nutrient-balanced, high N:P and low N:P), addition or omission of A. catenella (an estimated initial concentration of 38 A. catenella cells ml− 1, a value typical for blooms in harbours of the Catalan coast), and selective addition of a cultured population of Acartia grani. P sufficiency had a strong positive effect on the growth of A. grani, both with or without A. catenella addition, presumably due to enhanced food quality of the prey community. The presence of this copepod resulted in lower concentrations of ciliates, A. catenella, and other dinoflagellates, suggesting active grazing by the copepods. No noxious effects of A. catenella on the copepods were detected at the relatively low cell concentrations of that dinoflagellate used in the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号