首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4696篇
  免费   113篇
  国内免费   172篇
  2023年   25篇
  2022年   43篇
  2021年   39篇
  2020年   49篇
  2019年   78篇
  2018年   86篇
  2017年   60篇
  2016年   74篇
  2015年   82篇
  2014年   191篇
  2013年   353篇
  2012年   121篇
  2011年   209篇
  2010年   138篇
  2009年   231篇
  2008年   232篇
  2007年   282篇
  2006年   210篇
  2005年   199篇
  2004年   194篇
  2003年   174篇
  2002年   135篇
  2001年   87篇
  2000年   89篇
  1999年   87篇
  1998年   101篇
  1997年   101篇
  1996年   79篇
  1995年   125篇
  1994年   100篇
  1993年   93篇
  1992年   85篇
  1991年   71篇
  1990年   65篇
  1989年   62篇
  1988年   73篇
  1987年   59篇
  1986年   73篇
  1985年   78篇
  1984年   85篇
  1983年   32篇
  1982年   42篇
  1981年   41篇
  1980年   52篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有4981条查询结果,搜索用时 31 毫秒
991.
15N natural abundances and N use by tundra plants   总被引:2,自引:0,他引:2  
Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar 15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock tundra at several other sites and across five other tundra types at a single site. Ericaceous species had the lowest 15N values, ranging between about –8 to –6. Foliar 15N contents increased progressively in birch, willows and sedges to maximum 15N values of about +2 in sedges. Soil 15N contents in tundra ecosystems at our two most intensively studied sites increased with depth and 15N values were usually higher for soils than for plants. Isotopic fractionations during soil N transformations and possibly during plant N uptake could lead to observed differences in 15N contents among plant species and between plants and soils. Patterns of variation in 15N content among species indicate that tundra plants acquire nitrogen in extremely nutrient-poor environments by competitive partitioning of the overall N pool. Differences in plant N sources, rooting depth, mycorrhizal associations, forms of N taken up, and other factors controlling plant N uptake are possible causes of variations in 15N values of tundra plant species.  相似文献   
992.
Reassessing the nitrogen relations of Arctic plants: a mini-review   总被引:7,自引:2,他引:5  
The Arctic is often assumed to be an NH4+-dominated ecosystem. This review assesses the validity of this assumption. It also addresses the question of whether Arctic plant growth is limited by the ability to use the forms of nitrogen that are available. The review demonstrates that several sources of soil nitrogen are available to Arctic plants, including soluble organic nitrogen (e.g. glycine, aspartic acid and glutamic acid), NH4+ and NO?3. In mesic Arctic soils, soluble organic nitrogen is potentially more important than either NH+4 or NO?3. Many Arctic species are capable of taking up soluble organic nitrogen (either directly and/or in association with ectomycorrhizae), with the greatest potential for soluble organic nitrogen uptake being exhibited by deciduous species. The ability to take up soluble organic nitrogen may enable some Arctic plants to avoid nitrogen limitations imposed by the slow rate of organic matter decomposition. NO?3 is also present in many Arctic soils, especially calcareous soils and soils near flowing water, animal burrows and bird cliffs. Arctic species characteristic of mesic and xeric habitats are capable of taking up and assimilating NO?3. Even when present in lower concentrations in soils than NH+4, NO?3 is still an important source of nitrogen for some Arctic plants. Arctic-plants therefore have a variety of nitrogen sources available to them, and are capable of using those nitrogen sources. Taken together, these findings demonstrate that the Arctic is not an NH+4dominated ecosystem. Symbiotic fixation of atmospheric N2 does not appear to be an important source of nitrogen for Arctic plants. The reliance of Arctic plants on internal recycling of nitrogen substantially reduces their dependence on soil nitrogen uptake (this is particularly the case for slow-growing evergreens). Despite the high level of internal nitrogen recycling, Arctic plant growth remains limited by the low levels of available soil nitrogen. However, Arctic plant growth is not limited by an inability to utilize any of the available forms of nitrogen. The potential effects of climatic warming on nitrogen availability and use are discussed. The question of whether the Arctic ecosystem is uniquely different from temperate nitrogen-deficient ecosystems is also assessed.  相似文献   
993.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase.  相似文献   
994.
Two full-length cDNAs encoding hydroxypyruvate reductase were isolated from a cDNA library constructed with poly(A)+ RNA from pumpkin green cotyledons. One of the cDNAs, designated HPR1, encodes a polypeptide of 386 amino acids, while the other cDNA, HPR2 encodes a polypeptide of 381 amino acids. Although the nucleotide and deduced amino acid sequences of these cDNAs are almost identical, the deduced HPR1 protein contains Ser-Lys-Leu at its carboxy-terminal end, which is known as a microbody-targeting signal, while the deduced HPR2 protein does not. Analysis of genomic DNA strongly suggests that HPR1 and HPR2 are produced by alternative splicing.  相似文献   
995.
Although activity of the enzyme nitrate reductase (NR) can potentially be used to predict the rate of nitrate incorporation in field assemblages of marine phytoplankton, application of this index has met with little success because the relationship between the two rates is not well established under steady-state conditions. To provide a basis for using NR activity measurements, the relationships among NR activity, growth rate, cell composition, and nitrate incorporation rate were examined in cultures of Thalassiosira pseudonana (Hustedt)Hasle and Heimdal, growing a) under steady-state light limitation, b) during transitions between low and high irradiance (15 or 90 μmol quanta.m?2.s?1), and c) under steady-state nitrate limitation. Using a modified assay for NR involving additions of bovine serum albumin to stabilize enzyme activity, NR activity in light-limited cultures was positively and quantitatively related to calculated rates of nitrate incorporation, even in cultures that were apparently starved of selenium. During transitions in irradiance, growth rates acclimated to new conditions within 1 day; through the transition, the relationship between NR activity and nitrate incorporation rate remained quantitative. In nitrate-limited chemostat cultures, NR activity was positively correlated with growth rate and with nitrate incorporation rates, but the relationship was not quantitative. NR activity exceeded nitrate incorporation rates at lower growth rates (<25% of nutrient-replete growth rates), but chemostats operating at such low dilution rates may not represent ecologically relevant conditions for marine diatoms. The strong relationship between NR activity and nitrate incorporation provides support for the idea that NR is rate-limiting for nitrate incorporation or is closely coupled to the rate-limiting step. In an effort to determine a suitable variable for scaling NR activity, relationships between different cell components and growth rate were examined. These relationships differed depending on the limiting factor. For example, under light limitation, cell volume and cell carbon content increased significantly with increased growth rate, while under nitrate limitation cell volume and carbon content decreased as growth rates increased. Despite the differences found between cell composition and growth rate under light and nitrate limitation, the relationships between NR activity scaled to different compositional variables and growth rate did not differ between the limitations. In field situations where cell numbers are not easily determined, scaling NR activity to particulate nitrogen content may be the best alternative. These results establish a strong basis for pursuing NR activity measurements as indices of nitrate incorporation in the field.  相似文献   
996.
Measurement of the activity of the enzyme nitrate reductase (NR) may provide a useful index of nitrogen metabolism in marine macroalgae. In several species, including Fucus gardneri P. C. Silva, in vitro assays previously failed to detect NR activity, necessitating the use of in situ (or so-called“in vivo”) assays, which are more loosely controlled and lead to dafficulties in assessing enzyme characteristics such as the half-saturation constant (Km). In this paper, we describe an in vitro NR assay developed for F. gardneri, in which tissue was homogenized using liquid nitrogen prior to the assay. In contrast to previous studies, enzyme activity was always detectable in F. gardneri collected directly from the field at levels up to 30 nmol nitrate converted to nitrite·min?1·g?1 wet weight. The effect of a variety of compounds, commonly added to NR extraction buffers, were tested. Additions of protease inhibitors, bovine serum albumin, and ethylenediamine tetraacetic acid had no consistent effects on NR activity, while polyvinyl pyrrolidone, potassium ferricyanide, and flavin adenine dinucleotide significantly decreased activity. The half-saturation constant (Km) for NADH was 0.18 (± 0.05) mM and for nitrate, Km=0.99 (±0.41) mM. Significant NR activity was detected without the addition of nitrate, suggesting that internal pools of nitrate averaging approximately 20 μmol NO3?·g?1 wet weight were present in F. gardneri in February. The distribution of NR activity within the plant was highly variable between individuals, but activities were approximately 5-fold lower in the stipe than in midregions. In plants freshly sampled from the field, NR activity increased 7-fold from February to March, then fell to near-February levels by April. These changes in activity may correspond to seasonal changes in growth rate. The assay, optimized for F. gardneri, was used in several different macroalgal species from different taxa: Porphyra sp., Coralina vancouveriensis Yendo, Ulva sp., Enteromorpha intestinalis (Linnaeus) Nees, Macrocystis integrifolia Bory; and Costaria costatum (C. Agardh) Saunders. For all species tested, NR activity was detectable and, except for one species (Porphya sp.), was equal to or greater than activities measured by other workers using in vivo or in vitro assays for plants under similar conditions.  相似文献   
997.
Abstract: Exposure of cultured rat hippocampal neurons to glutamate resulted in accumulation of cellular peroxides (measured using the dye 2,7-dichlorofluorescein). Peroxide accumulation was prevented by an N -methyl- d -aspartate (NMDA) receptor antagonist and by removal of extracellular Ca2+, indicating the involvement of NMDA receptor-induced Ca2+ influx in peroxide accumulation. Glutamate-induced reactive oxygen species contributed to loss of Ca2+ homeostasis and excitotoxic injury because antioxidants (vitamin E, propyl gallate, and N-tert -butyl-α-phenylnitrone) suppressed glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and cell death. Basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF), but not ciliary neurotrophic factor, each suppressed accumulation of peroxides induced by glutamate and protected neurons against excitotoxicity. bFGF, NGF, and BDNF each increased (to varying degrees) activity levels of superoxide dismutases and glutathione reductase. NGF increased catalase activity, and BDNF increased glutathione peroxidase activity. The ability of the neurotrophic factors to suppress glutamate toxicity and glutamate-induced peroxide accumulation was attenuated by the tyrosine kinase inhibitor genistein, indicating the requirement for tyrosine phosphorylation in the neuroprotective signal transduction mechanism. The data suggest that glutamate toxicity involves peroxide production, which contributes to loss of Ca2+ homeostasis, and that induction of antioxidant defense systems is a mechanism underlying the [Ca2+]i-stabilizing and excitoprotective actions of neurotrophic factors.  相似文献   
998.
A fast-growing normal and a slow-growing gibberellin-deficient mutant of Lycopersicon esculentum (L.) Mill. cv. Moneymaker were used to test the hypothesis that slow-growing plants reduce NO3? in the root to a greater extent than do fast-growing plants. Plants that reduce NO3? in the root may grow more slowly due to the higher energetic and carbon costs associated with root-based NO3? reduction compared to photosynthetically driven shoot NO3? reduction. The plants were grown hydroponically with a complete nutrient solution containing 10 mM NO3? and the biomass production, gas exchange characteristics, root respiratory O2 consumption, nitrate reductase activity and translocation of N in the xylem were measured. The gibberellin-deficient mutants accumulated more total N unit?1 dry weight than did the faster-growing normal plants. There were no significant differences between the genotypes in the rates of photosynthesis expressed on a leaf dry weight basis. The plants differed in the proportion of photosynthetic carbon available to growth due to a greater proportion of daily photo-synthate production being consumed by respiration in the slow-growing genotype. This difference in allocation of carbon was associated with differences in the specific leaf area and specific root length. In addition, a greater leaf weight ratio in the fast-growing than in the slow-growing plants indicates a greater investment of carbon into biomass supporting photosynthetic production in the former. We did not find differences in the activity or distribution of nitrate reductase or in the N composition of the xylem sap between the genotypes. We thus conclude that the growth rate was determined by the efficiency of carbon partitioning and that the site of NO3? reduction and assimilation was not related to the growth rate of these plants.  相似文献   
999.
1000.
硫酸铵与盐酸胍对鸡肝二氢叶酸还原酶的激活和失活作用   总被引:3,自引:1,他引:2  
在5℃、20℃、30℃,鸡肝二氢叶酸还原酶的活力随盐酸胍浓度增加,先经历一个激活区,以后则为失活区。温度升高,使最大激活幅度变小,激活区变窄,所需盐酸胍浓度减小,硫酸铵在浓度低于0.2mol/L时,对天然酶有较小的激活作用,更高浓度的硫酸铵使酶活力下降;胍激活酶的活力随硫酸铵浓度的增加,由天然酶的210%单调下降;对失活酶,增加硫酸铵的浓度,则使酶活力逐渐恢复;三种情形的终活力均为天然酶的40%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号