首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4694篇
  免费   113篇
  国内免费   172篇
  2023年   25篇
  2022年   41篇
  2021年   39篇
  2020年   49篇
  2019年   78篇
  2018年   86篇
  2017年   60篇
  2016年   74篇
  2015年   82篇
  2014年   191篇
  2013年   353篇
  2012年   121篇
  2011年   209篇
  2010年   138篇
  2009年   231篇
  2008年   232篇
  2007年   282篇
  2006年   210篇
  2005年   199篇
  2004年   194篇
  2003年   174篇
  2002年   135篇
  2001年   87篇
  2000年   89篇
  1999年   87篇
  1998年   101篇
  1997年   101篇
  1996年   79篇
  1995年   125篇
  1994年   100篇
  1993年   93篇
  1992年   85篇
  1991年   71篇
  1990年   65篇
  1989年   62篇
  1988年   73篇
  1987年   59篇
  1986年   73篇
  1985年   78篇
  1984年   85篇
  1983年   32篇
  1982年   42篇
  1981年   41篇
  1980年   52篇
  1979年   24篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有4979条查询结果,搜索用时 31 毫秒
111.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   
112.
Active transport systems in bacteria can be divided into two groups: those that are osmotic shock-resistant with one single membrane protein, and those that are shock-sensitive and have a membrane-bound protein complex plus a soluble periplasmic protein. Whether the bacterial assimilatory nitrate transport falls into the one or the other of these two groups has not been studied before. We report that nitrate uptake by the strictly aerobic, N2-fixing heterotrophic bacterium Azotobacter chroococcum is sensitive to osmotic shock. The polypeptide composition of cytoplasmic membranes changes in response to the nitrogen source available to the cells. Incorporation of [35S]-methionine into proteins as well as use of the A. chroococcum TRI mutant, which is defective in nitrate transport, and the A. choococcum MCD1 strain, a mutant unable to use nitrate as a nitrogen source, suggest that nitrate transport into A. chroococcum cells is mediated by a multicomponent system tightly bound to the cytoplasmic membrane.  相似文献   
113.
A range of approaches was used to investigate how species within a fire-prone Banksia woodland in South West Australia exploited inorganic soil nitrogen sources and how this changes through the development of the fire chronosequence. Nitrate and ammonium were present in soil solution throughout the chronosequence but nitrate predominated in recently burnt sites. Mean shoot nitrate reductase activities were high for all species in recently burnt sites and showed little increase when nitrate was supplied via the transpiration stream. Nitrate reductase of shoots of most species was low at sites not burnt for several years, but following transpirational induction with nitrate, developed activities similar to those at recently burnt sites. The principal amino compounds transported in the xylem were species specific, including asparagine, glutamine and citrulline-dominated species, and changed little in relative composition across the chronosequence. Species most active in leaf nitrate reduction transported the largest amounts of nitrate in their xylem sap and proportional amounts of nitrate in xylem tended to be greatest in recently burnt sites. Most of the species examined appeared to be shoot rather than root nitrate assimilators, but marked differences were recorded in potential of leafy shoots of different species to reduce nitrate. As a general rule, shallow-rooted herbaceous, non-mycorrhizal or VAM-positive species had the highest capacity to reduce nitrate, whereas woody species with ericoid mycorrhizae or combined vesicular arbuscular/ectomycorrhizal associations exhibited little capacity to reduce nitrate in roots or shoots. It seems likely that this latter group utilize ammonium or even organic forms of nitrogen rather than nitrate. Some putative nitrogen-fixing species were active in reducing and transporting nitrate, others were virtually inactive in these respects.  相似文献   
114.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   
115.
Protein conformational changes related to transport into chloroplasts have been studied. Two chimaeric proteins carrying the transit peptide of either ferredoxin or plastocyanin linked to the mouse cytosolic enzyme dihydrofolate reductase (EC 1.5.1.3.) were employed. In contrast to observations in mitochondria, we found in chloroplasts that transport of a purified ferredoxin-dihydrofolate reductase fusion protein is not blocked by the presence of methotrexate, a folate analogue that stabilizes the structural conformation of dihydrofolate reductase. It is shown that transport competence of this protein in the presence of methotrexate is not a consequence of alteration of the folding characteristics or methotrexate binding properties of dihydrofolate reductase by fusion to the ferredoxin transit peptide. Binding of dihydrofolate reductase fusion proteins to chloroplast envelopes is not inhibited by low temperature and it is only partially diminished by methotrexate. It is demonstrated that the dihydrofolate reductase fusion proteins unfold, despite the presence of methotrexate, on binding to the chloroplast envelopes. We propose the existence of a strong protein unfolding activity associated to the chloroplast envelopes.  相似文献   
116.
In many egg-laying reptiles, the incubation temperature of the egg determines the sex of the offspring, a process known as temperature-dependent sex determination (TSD). In TSD sex determination is an “all or none” process and intersexes are rarely formed. How is the external signal of temperature transduced into a genetic signal that determines gonadal sex and channels sexual development? Studies with the red-eared slider turtle have focused on the physiological, biochemical, and molecular cascades initiated by the temperature signal. Both male and female development are active processes—rather than the crganized/default system characteristic of vertebrates with genotypic sex determination—that require simultaneous activation and suppression of testis- and ovary-determining cascades for normal sex determination. It appears that temperature accomplishes this end by acting on genes encoaing for steroidogenic enzymes and steroid hormone receptors and modifying the endocrine microenvironment in the embryo. The temperature experienced in development also has long-term functional outcomes in addition to sex determination. Research with the leopard gecko indicates that incubation temperature as well as steroid hormones serve as organizers in shaping the adult phenotype, with temperature modulating sex hormone action in sexual differentiation. Finally, practical applications of this research have emerged for the conservation and restoration of endangered egg-laying reptiles as well as the embryonic development of reptiles as biomarkers to monitor the estrogenic effects of common environmental contaminants. © 1994 Wiley-Liss, Inc.  相似文献   
117.
Tobacco plants were genetically transformed to generate antisense RNA from a gene construct comprised of a full-length cucumber NADH-dependent hydroxypyruvate reductase (HPR) cDNA placed in reverse orientation between the cauliflower mosaic virus 35S promoter and a nopaline synthase termination/polyadenylation signal sequence. In vivo accumulation of antisense HPR RNA within eight independent transgenic tobacco plants resulted in reductions of up to 50% in both native HPR activity and protein accumulation relative to untransformed tobacco plants (mean transgenote HPR activity=67% wild type, mean transgenote HPR protein=63% wild type). However, in contrast to previous reports describing antisense RNA effects in plants, production of the heterologous HPR antisense RNA did not systematically reduce levels of native tobacco HPR mRNA (mean transgenote HPR mRNA level=135% wild type). Simple regression comparison of the steady-state levels of tobacco HPR mRNA to those of HPR antisense RNA showed a weak positive correlation (r value of 0.548, n=9 ; n is wild type control plus eight independent transformants; significant at 85% confidence level), supporting the conclusion that native mRNA levels were not reduced within antisense plants. Although all transgenic antisense plants examined displayed an apparent reduction in both tobacco HPR protein and enzyme activity, there is no clear correlation between HPR activity and the amount of either sense (r=0.267, n=9) or antisense RNA (r=0.175, n=9). This compares to a weak positive correlation between HPR mRNA levels and the amount of HPR activity observed in wild-type SRI tobacco plants (r=0.603, n=5). The results suggest that in vivo production of this heterologous HPR antisense RNA is inhibitory at the level of HPR-specific translation and produces its effect in a manner not dependent upon, nor resulting in, a reduction in steady-state native HPR mRNA levels. In this context, the observed antisense effect appears to differ mechanistically from most antisense systems described to date.  相似文献   
118.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   
119.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   
120.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号