首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   24篇
  国内免费   12篇
  2023年   11篇
  2022年   16篇
  2021年   9篇
  2020年   6篇
  2019年   16篇
  2018年   20篇
  2017年   8篇
  2016年   3篇
  2015年   5篇
  2014年   33篇
  2013年   48篇
  2012年   21篇
  2011年   35篇
  2010年   15篇
  2009年   20篇
  2008年   17篇
  2007年   22篇
  2006年   23篇
  2005年   18篇
  2004年   17篇
  2003年   16篇
  2002年   3篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   14篇
  1994年   17篇
  1993年   13篇
  1992年   11篇
  1991年   3篇
  1990年   5篇
  1989年   11篇
  1988年   14篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   19篇
  1981年   15篇
  1980年   9篇
  1979年   3篇
  1977年   4篇
  1976年   5篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
排序方式: 共有617条查询结果,搜索用时 15 毫秒
61.
Primary hyperoxaluria (PH) is a rare autosomal recessive disorder of glyoxylate metabolism in humans. It is characterized by the accumulation of oxalate and subsequent precipitation of calcium oxalate crystals, primarily in the kidneys. Deficiencies in glyoxylate-metabolizing enzymes alanine-glyoxylate aminotransferase (AGXT) or glyoxylate reductase/hydroxypyruvate reductase (GRHPR) occur in 95% of PH cases. Seven Coton de Tulear puppies from four apparently unrelated litters were examined owing to sudden illness at the age of 3-4 weeks. A complete necropsy was performed. The typical finding was tubular necrosis with extensive oxalate crystal deposition. Based on history and necropsy findings, PH was suspected. Eight microsatellite loci flanking AGXT and GRHPR were analysed, and based on segregation results, AGXT was suspected as to be the candidate gene. AGXT exon sequencing revealed a single base change (c.996G>A) that changed one conserved residue (p.Gly102Ser). The mutation was tested in of 118 Finnish Coton de Tulear dogs, ten (8.5%) of which were revealed as carriers. This preliminary study reports PH as a cause of neonatal death in Finnish Coton de Tulear and suggests that genetic testing of dogs be carried out before breeding to prevent the birth of affected offspring.  相似文献   
62.
In Parkinson's disease (PD), aside from the central lesion, involvement of visceral organs has been proposed as part of the complex clinical picture of the disease. The issue is still poorly understood and relatively unexplored. In this study we used a classic rodent model of nigrostriatal degeneration, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), to investigate whether and how a PD-like central dopaminergic denervation may influence hepatic functions. Rats received an intrastriatal injection of 6-OHDA or saline (sham), and blood, cerebrospinal fluid, liver and brain samples were obtained for up to 8 weeks after surgery. Specimens were analyzed for changes in cytokine and thyroid hormone levels, as well as liver mitochondrial alterations. Hepatic mitochondria isolated from animals bearing extended nigrostriatal lesion displayed increased ROS production, while membrane potential (ΔΨ) and ATP production were significantly decreased. Reduced ATP production correlated with nigral neuronal loss. Thyroid hormone levels were significantly increased in serum of PD rats compared to sham animals while steady expression of selected cytokines was detected in all groups. Hepatic enzyme functions were comparable in all animals. Our study indicates for the first time that in a rodent model of PD, hepatic mitochondria dysfunctions arise as a consequence of nigrostriatal degeneration, and that thyroid hormone represents a key interface in this CNS-liver interaction. Liver plays a fundamental detoxifying function and a better understanding of PD-related hepatic mitochondrial alterations, which might further promote neurodegeneration, may represent an important step for the development of novel therapeutic strategies.  相似文献   
63.
Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana,1 although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further.2 Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway.  相似文献   
64.
65.
E.coli天冬氨酸转氨酶结构与功能关系的研究进展   总被引:1,自引:1,他引:0  
天冬氨酸转氨酶是转氨反应的高效催化剂,并且对细胞中氮和碳的代谢起到非常重要的作用。上世纪90年代中期以来,从结构的水平上来分析E.coli天冬氨酸转氨酶的催化机理,以指导酶的改造研究已经成为国外的研究热点从酶的催化机理、序列及结构特点、活性中心残基组成以及基因多态性对结构和功能的影响四个方面。综述近年来有关E.coli天冬氨酸转氨酶的研究现状。  相似文献   
66.
Transaminases catalyse the reversible transfer of amino and keto groups between an amino acid and keto acid substrate pair. Many bacterial transaminases accept a wide array of keto acids as amino acceptors and are useful as commercial biocatalysts in the preparation of amino acids. Since the reaction equilibrium typically lies close to unity, several approaches have been described to improve upon the 50% product yield, using additional enzymes. The present work describes an efficient means to significantly increase product yield in transamination using the aromatic transaminase of Escherichia coli encoded by the tyrB gene, with -aspartate as the amino donor. This is achieved by the introduction of the alsS gene encoding the acetolactate synthase of Bacillus subtilis, which eliminates pyruvate and alanine produced as a by-product of aspartate transamination. The biosynthesis of the non-proteinogenic amino acid -2-aminobutyrate is described using a recombinant strain of E. coli containing the cloned tyrB and alsS genes. The strain additionally carries the cloned ilvA gene of E. coli encoding threonine deaminase to produce the substrate 2-ketobutyrate from -threonine. An alternate coupled process uses lysine -aminotransferase in concert with a transaminase using -glutamate as the amino donor.  相似文献   
67.
Abstract: Species differences in susceptibility are a unique feature associated with the neurotoxicity of β-N-oxalyl-l -α,β-diaminopropionic acid (l -ODAP), the Lathyrus sativus neurotoxin, and the excitotoxic mechanism proposed for its mechanism of toxicity does not account for this feature. The present study examines whether neurotoxicity of l -ODAP is the result of an interference in the metabolism of any amino acid and if it could form the basis to explain the species differences in susceptibility. Thus, Wistar rats and BALB/c (white) mice, which are normally resistant to l -ODAP, became susceptible to it following pretreatment with tyrosine (or phenylalanine), exhibiting typical neurotoxic symptoms. C57BL/6J (black) mice were, however, normally susceptible to l -ODAP without any pretreatment with tyrosine. Among the various enzymes associated with tyrosine metabolism examined, the activity of only tyrosine aminotransferase (TAT) was inhibited specifically by l -ODAP. The inhibition was noncompetitive with respect to tyrosine (Ki = 2.0 ± 0.1 mM) and uncompetitive with respect to α-ketoglutarate (Ki = 8.4 ± 1.5 mM). The inhibition of TAT was also reflected in a marked decrease in the rate of oxidation of tyrosine by liver slices, an increase in tyrosine levels of liver, and also a twofold increase in the dopa and dopamine contents of brain in l -ODAP-injected black mice. The dopa and dopamine contents in the brain of only l -ODAP-injected white mice did not show any change, whereas levels of these compounds were much higher in tyrosine-pretreated animals. Also, the radioactivity associated with tyrosine, dopa, and dopamine arising from [14C]tyrosine was twofold higher in both liver and brain of l -ODAP-treated black mice. Thus, a transient increase in tyrosine levels following the inhibition of hepatic TAT by l -ODAP and its increased availability for the enhanced synthesis of dopa and dopamine and other likely metabolites (toxic?) resulting therefrom could be the mechanism of neurotoxicity and may even underlie the species differences in susceptibility to this neurotoxin.  相似文献   
68.
Mitochondrial 4-aminobutyrate aminotransferase in rat kidney can utilize pyruvate as the acceptor for the amino group of 4-aminobutyrate. Renal 4-aminobutyrate aminotransferase activity at saturating equimolar concentration of 4-aminobutyrate and 5 mM pyruvate is 42.8 ± 2.5 μmol/g protein per h (mean ± S.E.M.) or 70% of 4-aminobutyrate aminotransferase activity with equimolar α-ketoglutarate. 4-Aminobutyrate aminotransferase in brain does not transaminate with pyruvate. Since pyruvate is an important mitochondrial metabolite in kidney, net disposal of glutamate via the 4-aminobutyrate pathway is possible. The renal 4-aminobutyrate pathway in the rat has other distinctive features when compared with the pathway in rat brain. Most inhibitors of rat neuronal glutamate decarboxylase were ineffective against the renal form of the enzyme, but 20 mM semicarbazide inhibited the latter form by 80% (P < 0.001) in vitro and reduced renal 4-aminobutyrate content by 75% (P < 0.001) in vivo. In the presence of 20 mM semicarbazide, ammoniagenesis by rat renal cortex slices incubated in 1 mM glutamine was inhibited 26% (P < 0.01). Semicarbazide was proportionately less effective (15% inhibition) when ammoniagenesis was stimulated (+243%) in slices prepared from chronically acidotic animals, and was no deterrant to ammoniagenesis when non-acidotic slices were incubated in supraphysiologic concentrations of 10 mM glutamine. We conclude that whereas integrity of the renal 4-aminobutyrate pathway may contribute to glutamate disposal and thus ammoniagenesis under physiologic conditions, the pathway is a passive participant in the overall process of ammoniagenesis.  相似文献   
69.
Summary Aryl hydrocarbon hydroxylase (AHH) and tyrosine aminotransferase (TAT) activities were determined in rat liver cell lines after frozen storage, long-term culture, and transformation in vitro. Levels of AHH activity after 17 months in frozen storage were comparable to levels prior to freezing. During long-term culture the AHH levels of the cell lines tended to decrease. Transformed lines had variable levels of AHH activity. Cell lines retained measurable TAT activity following long-term culture and frozen storage. TAT activity of transformed cells was comparable to that of normal lines. Prolonged frozen storage did not induce transformation up to one year.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号