首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   155篇
  国内免费   310篇
  2024年   6篇
  2023年   50篇
  2022年   48篇
  2021年   58篇
  2020年   70篇
  2019年   98篇
  2018年   54篇
  2017年   86篇
  2016年   80篇
  2015年   68篇
  2014年   70篇
  2013年   83篇
  2012年   56篇
  2011年   60篇
  2010年   49篇
  2009年   60篇
  2008年   56篇
  2007年   52篇
  2006年   40篇
  2005年   51篇
  2004年   31篇
  2003年   39篇
  2002年   24篇
  2001年   41篇
  2000年   31篇
  1999年   21篇
  1998年   11篇
  1997年   19篇
  1996年   11篇
  1995年   10篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1476条查询结果,搜索用时 15 毫秒
141.
Background, Aim and Scope Sustainability is a well recognised goal which is difficult to manage due to its complexity. As part of a series of sustainability management tools, a Product Sustainability Index (PSI) is translating the sustainability aspects to the organization of vehicle product development of Ford of Europe, thus allocating ownership and responsibility to that function. PSI is limiting the scope to those key environmental, social and economic characteristics of passenger vehicles that are controllable by the product development organisation. Materials and Methods: The PSI considers environmental, economic and social aspects based on externally reviewed life cycle environmental and cost aspects (Life Cycle Assessment, Cost of ownership / Life Cycle Costing), externally certified aspects (allergy-tested interior) and related aspects as sustainable materials, safety, mobility capability and noise. After the kick-off of their product development in 2002, the new Ford S-MAX and Ford Galaxy are serving as a pilot for this tool. These products are launched in Europe in 2006. The tracking of PSI performance has been done by engineers of the Vehicle Integration department within the product development organization. The method has been translated in an easy spreadsheet tool. Engineers have been trained within one hour trainings. The application of PSI by vehicle integration followed the principle to reduce the need for any incremental time or additional data to a minimum. PSI is adopted to the existing decision-making process. End of 2005, an internal expert conducted a Life Cycle Assessment and Life Cycle Costing (LCC) study for verification purposes using commercial software. This study and the PSI have been scrutinized by an external review panel according to ISO14040 and, by taking into consideration the on-going SETAC, work in the field of LCC. Results: The results of the Life Cycle based indicators of PSI as calculated by non-experts are fully in line with those of the more detailed expert study. The difference is below 2%. The new Ford Galaxy and Ford S-MAX shows significantly improved performance regarding the life cycle air quality, use of sustainable materials, restricted substances and safety compared to the previous model Galaxy. The affordability (Life Cycle Cost of Ownership) has also been improved when looking at the same engine types. Looking at gasoline versus diesel options, the detailed study shows under what conditions the diesel options are environmentally preferable and less costly (mileage, fuel prices, etc.). Discussion: The robustness of results has been verified in various ways. Based also on Sensitivity and Monte-Carlo Analysis, case study-specific requirements have been deduced defining criteria for a significant environmental improvement between the various vehicles. Only if the differences of LCIA results between two vehicles are larger than a certain threshold are the above-mentioned results robust. Conclusions: In general terms, an approach has been implemented and externally reviewed that allows non-experts to manage key environmental, social and economic aspects in the product development, also on a vehicle level. This allows mainstream functions to take ownership of sustainability and assigns accountability to those who can really decide on changes affecting the sustainability performance. In the case of Ford S-MAX and Galaxy, indicators from all three dimensions of sustainability (environment, social and economic) have been improved compared to the old Ford Galaxy. Recommendations and Perspectives: Based on this positive experience, it is recommended to make, in large or multinational organizations, the core business functions directly responsible and accountable for managing their own part of environmental, social and economic aspects of sustainability. Staff functions should be limited to starting the process with methodological and training support and making sure that the contributions of the different main functions fit together.  相似文献   
142.

Goal, Scope and Background

Brazil is the world's biggest producer of coffee beans with approx. a 30% market share. Depending on climate conditions, approx. 30 million bags of coffee beans are exported annually from Brazil, while domestic consumption is around 10 million bags, which makes Brazil the world's third largest coffee-consuming country. Therefore, the goal of this paper is to present the LCA of green coffee produced in Brazil for the reference crops 2001/02 and 2002/03 in order to generate detailed production inventory data as well as to identify the potential environmental impacts of its tillage in order to realize how to reduce those impacts and increase the environmental sustainability of this product. Only the inputs and outputs relative to the coffee tillage were considered. The production of fertilizers, correctives and pesticides were not included in the boundary, but only their amounts. The functional unit selected for this study was 1,000 kg of green coffee destined for exportation.

Methods

The LCI was performed according to the ISO 14040 standard series. All information considered in this study (use of water, fossil based energy, fertilizers and chemicals) were taken up in in-depth data collection and evaluation by questionnaires applied on a farm level and/or received by mail. Four Brazilian coffee producer regions were evaluated: Cerrado Mineiro, South of Minas Gerais State, the Marília and Alta Mogiana regions in São Paulo State. These regions have the following geographic coordinates: 44 to 50° W longitude and 18 to 24° S latitude. The data refer to a production of 420,000 coffee bean bags and a productive area of approx. 14,300 ha. The varieties of coffee beans considered in this study were Mundo Novo, Catuaí (yellow and red), Icatu (yellow and red), Catucaí (yellow and red) and Obatã. Farm specific data along with agricultural production data have been combined to elaborate a coffee cultivation inventory, which will be applied in an emissions estimation.

Results and Conclusion

The production of 1,000 kg of green coffee in Brazil requires approx. 11,400 kg of water, 94 kg of diesel, 270 kg of fertilizers as NPK, 900 kg of total fertilizers, 620 kg of correctives, 10 kg of pesticides and 0.05 hectare of annual land use. Outputs related to these functional units are approx. 3,000 kg of waste water from coffee washing, 8,500 kg of waste water from the wet method and 750 kg of organic residue that is reincorporated to the tillage as fertilizer. The publication of an LCI of agricultural products is a fundamental step for understanding the potential environmental impacts of each tillage and then establishes the basis for product sustainability. In this way, this work is the first Brazilian initiative for applying LCA to coffee cultivation.

Recommendation and Perspective

Different agricultural practices demonstrate different environmental profiles. The amount of agricultural pesticide is directly related to agricultural practices as tillage rotation, density of plants, etc. This study supplied important results for a better correlation of the agricultural practices and potential environmental impacts of coffee. Future updates of this study will show the evolution of the natural resource management such as land use, new agricultural practices, lower fertilizers and chemicals use.  相似文献   
143.
AIMS: The mikan, or Japanese mandarin orange, is a popular fruit in Japan, but its peel is one of the major agricultural wastes. The aims of this study were to screen, isolate, and characterize a mikan peel-degrading microbe. METHODS AND RESULTS: Several samples including activated sludge, sediment, compost and spoiled mikan peel were collected and cultured in a minimal salt medium containing mikan peel as the sole carbon source. Degradation activity was found in a culture of the spoiled mikan peel, and a fungal strain, designated OP1, with both cellulolytic and pectinolytic activity was isolated. No toxic metabolites, such as mycotoxins, were found in OP1 cultures, as evaluated by gas chromatography/mass spectrometry. A phylogenetic analysis strongly suggested that OP1 is a novel species of the genus Penicillium. CONCLUSIONS: Results suggest that Penicillium sp. OP1 plays an important role in aerobic microbial degradation of cellulose/pectin-rich biomasses in soil ecology, and further imply that this strain may be useful for both simultaneous cellulase/pectinase production and reduction of agricultural waste. SIGNIFICANCE AND IMPACT OF THE STUDY: The present results advance our understanding of microbial degradation of cellulose/pectin-rich biomasses in the natural environment, and offer a new tool for reduction of agricultural waste, which is important for sustaining circulatory societies.  相似文献   
144.
Recent studies have indicated that culturable bacteria constitute highly sensitive bioindicators of metal-induced stress in soil. We report the impact of different copper exposure levels characteristic of contaminated agricultural soils on culturable Pseudomonas spp. in the rhizosphere of sugar beet. We observed that the abundance of Pseudomonas spp. was much more severely affected than that of the general population of culturable heterotrophic bacteria by copper. For diversity assessment, Pseudomonas isolates were divided into operational taxonomic units based on amplified ribosomal DNA restriction analysis and genomic PCR fingerprinting by universally primed PCR. Copper significantly decreased the diversity of Pseudomonas spp. in the rhizosphere and significantly increased the frequency of copper-resistant isolates. Concomitant chemical and biological analysis of copper in the rhizosphere and in bulk soil extracts indicated no rhizosphere effect and a relatively low copper bioavailability in the studied soil, suggesting that the observed effects of copper may occur at lower total concentrations in other soils. We conclude that culturable Pseudomonas sensu stricto constitutes a highly sensitive and relevant bioindicator group for the impact of copper in the rhizosphere habitat, and suggest that continued application of copper to agricultural soils poses a significant risk to successful rhizosphere colonization by Pseudomonas spp.  相似文献   
145.
146.
147.
This article reviews the history and current state of ethanol production from sugarcane in Brazil and presents a strategy for improving ecosystem services and production. We propose that it is possible to produce ethanol from sugarcane while maintaining or even recovering some of Brazil's unique neotropical biodiversity and ecosystem climate services. This approach to the future of sustainable and responsible ethanol production is termed the ‘midway’ strategy. The ‘midway’ strategy involves producing the necessary biotechnology to increase productivity while synergistically protecting and regenerating rainforest. Three main areas of scientific and technological advance that are key to realizing the ‘midway’ strategy are: (i) improving the quality of scientific data on sugarcane biology as pertains to its use as a bioenergy crop; (ii) developing technologies for the use of bagasse for cellulosic ethanol; and (iii) developing policies to improve the ecosystem services associated with sugarcane landscapes. This article discusses these three issues in the general context of biofuels production and highlights examples of scientific achievements that are already leading towards the ‘midway’ strategy.  相似文献   
148.
The demand for wood from short rotation coppice (SRC) plantations as a renewable energy source is currently increasing and could affect biodiversity in agricultural areas. The objective was to evaluate the contribution of SRC plantations to phytodiversity in agricultural landscapes assessed as species richness, species–area relationships, Shannon indices, detrended correspondence analysis on species composition, Sørensen similarities, habitat preference proportions, and species proportions found in only one land use. Vegetation surveys were conducted on 12 willow (Salix spp.) and three poplar (Populus spp.) coppice sites as well as on surrounding arable lands, grasslands and forests in central Sweden and northern Germany. SRC plantations were richer in plant species (mean: 30 species per 100 m²) than arable land (10), coniferous forests (13) and mixed forests in Germany (12). Comparing SRC plantations with other land uses, we found lowest similarities in species composition with arable lands, coniferous forests and German mixed forests and highest similarities with marginal grassland strips, grasslands and Swedish mixed forests. Similarity depended on the SRC tree cover: at increased tree cover, SRC plantations became less similar to grasslands but more similar to forests. The SRC plantations were composed of a mixture of grassland (33%), ruderal (24%) and woodland (15%) species. Species abundance in SRC plantations was more heterogeneous than in arable lands. We conclude that SRC plantations form novel habitats leading to different plant species composition compared to conventional land uses. Their landscape‐scale value for phytodiversity changes depending on harvest cycles and over time. As a structural landscape element, SRC plantations contribute positively to phytodiversity in rural areas, especially in land use mosaics where these plantations are admixed to other land uses with dissimilar plant species composition such as arable land, coniferous forest and, at the German sites, also mixed forest.  相似文献   
149.
We present an approach for providing quantitative insight into the production‐ecological sustainability of biofuel feedstock production systems. The approach is based on a simple crop‐soil model and was used for assessing feedstock from current and improved production systems of cassava for bioethanol. Assessments were performed for a study area in Mozambique, a country considered promising for biomass production. Our focus is on the potential role of smallholders in the production of feedstock for biofuels. We take cassava as the crop for this purpose and compare it with feedstock production on plantations using sugarcane, sweet sorghum and cassava as benchmarks. Production‐ecological sustainability was defined by seven indicators related to resource‐use efficiency, soil quality, net energy production and greenhouse gas (GHG) emissions. Results indicate that of the assessed systems, sugarcane performed better than cassava, although it requires substantial water for irrigation. Targeted use of nutrient inputs improved sustainability of smallholder cassava. Cassava production systems on more fertile soils were more sustainable than those on less fertile soils; the latter required more external inputs for achieving the same output, affecting most indicators negatively and reducing the feasibility for smallholders. Cassava and sweet sorghum performed similarly. Cassava production requires much more labour per hectare than production of sugarcane or sweet sorghum. Production of bioethanol feedstock on cultivated lands was more sustainable and had potential for carbon sequestration, avoiding GHG emissions from clearing natural vegetation if new land is opened.  相似文献   
150.
Agriculturally driven changes in soil phosphorus (P) are known to have persistent effects on local ecosystem structure and function, but regional patterns of soil P recovery following cessation of agriculture are less well understood. We synthesized data from 94 published studies to assess evidence of these land‐use legacies throughout the world by comparing soil labile and total P content in abandoned agricultural areas to that of reference ecosystems or sites remaining in agriculture. Our meta‐analysis shows that soil P content was typically elevated after abandonment compared to reference levels, but reduced compared to soils that remained under agriculture. There were more pronounced differences in the legacies of past agriculture on soil P across regions than between the types of land use practiced prior to abandonment (cropland, pasture, or forage grassland). However, consistent patterns of soil P enrichment or depletion according to soil order and types of post‐agricultural vegetation suggest that these factors may mediate agricultural legacies on soil P. We also used mixed effects models to examine the role of multiple variables on soil P recovery following agriculture. Time since cessation of agriculture was highly influential on soil P legacies, with clear reductions in the degree of labile and total P enrichment relative to reference ecosystems over time. Soil characteristics (clay content and pH) were strongly related to changes in labile P compared to reference sites, but these were relatively unimportant for total P. The duration of past agricultural use and climate were weakly related to changes in total P only. Our finding of reductions in the degree of soil P alteration over time relative to reference conditions reveals the potential to mitigate these land‐use legacies in some soils. Better ability to predict dynamics of soil nutrient recovery after termination of agricultural use is essential to ecosystem management following land‐use change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号