首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6319篇
  免费   654篇
  国内免费   218篇
  2024年   32篇
  2023年   220篇
  2022年   151篇
  2021年   271篇
  2020年   247篇
  2019年   329篇
  2018年   298篇
  2017年   215篇
  2016年   208篇
  2015年   246篇
  2014年   344篇
  2013年   498篇
  2012年   271篇
  2011年   286篇
  2010年   232篇
  2009年   271篇
  2008年   305篇
  2007年   268篇
  2006年   286篇
  2005年   223篇
  2004年   226篇
  2003年   190篇
  2002年   192篇
  2001年   130篇
  2000年   112篇
  1999年   126篇
  1998年   120篇
  1997年   72篇
  1996年   92篇
  1995年   71篇
  1994年   75篇
  1993年   56篇
  1992年   47篇
  1991年   57篇
  1990年   32篇
  1989年   41篇
  1988年   30篇
  1987年   29篇
  1986年   26篇
  1985年   24篇
  1984年   35篇
  1983年   24篇
  1982年   43篇
  1981年   26篇
  1980年   32篇
  1979年   19篇
  1978年   13篇
  1977年   12篇
  1976年   13篇
  1975年   7篇
排序方式: 共有7191条查询结果,搜索用时 15 毫秒
951.
952.
Clinical data published in recent years have demonstrated positive effects of collagen hydrolysate (CH) on skin aging clinical signs. CH use as food supplement has a long history; however, few studies have addressed the underlying purpose of CH on the cellular and molecular biology of skin cells that could elucidate clinical improvement findings. Wide diversity of characteristics has been reported for dermal fibroblasts derived from different body sites and it is unknown whether collagen peptides could modulate differently cells from chronological aged and photoaged skin areas. This study investigated the influence of CH on the extracellular matrix metabolism and proliferation of human dermal fibroblasts (HDFs) derived from chronological aged (sun‐protected) and photoaged (sun‐exposed) body sites. CH treatment did not affect cellular proliferation of either cell cultures, but notably modulated cell metabolism in monolayer model, increasing the content of dermal matrix precursor and main protein, procollagen I and collagen I, respectively. These effects were confirmed in the human dermal equivalent model. The increase in collagen content in the cultures was attributed to stimulation of biosynthesis and decreased collagen I metabolism through inhibition of metalloproteinase activity (MMP) 1 and 2. Modulation of CH in dermal metabolism did not differ between cells derived from sun‐protected and sun‐exposed areas, although lower concentrations of CH seemed to be enough to stimulate sun‐exposed‐derived HDFs, suggesting more pronounced effect in these cells. This study contributes to understanding the biological effects of CH on skin cells and viability of its use as a functional ingredient in food supplements.  相似文献   
953.
Aging is characterized by a gradual functional decline of tissues with age. Adult stem and progenitor cells are responsible for tissue maintenance, repair, and regeneration, but during aging, this population of cells is decreased or its activity is reduced, compromising tissue integrity and causing pathologies that increase vulnerability, and ultimately lead to death. The causes of stem cell exhaustion during aging are not clear, and whether a reduction in stem cell function is a cause or a consequence of aging remains unresolved. Here, we took advantage of a mouse model of induced adult Sox2+ stem cell depletion to address whether accelerated stem cell depletion can promote premature aging. After a short period of partial repetitive depletion of this adult stem cell population in mice, we observed increased kyphosis and hair graying, and reduced fat mass, all of them signs of premature aging. It is interesting that cellular senescence was identified in kidney after this partial repetitive Sox2+ cell depletion. To confirm these observations, we performed a prolonged protocol of partial repetitive depletion of Sox2+ cells, forcing regeneration from the remaining Sox2+ cells, thereby causing their exhaustion. Senescence specific staining and the analysis of the expression of genetic markers clearly corroborated that adult stem cell exhaustion can lead to cellular senescence induction and premature aging.  相似文献   
954.
Aging is characterized by numerous molecular changes, such as accumulation of molecular damage and altered gene expression, many of which are linked to DNA methylation. Here, we characterize the blood DNA methylome across 16 age groups of mice and report numerous global, region‐ and site‐specific features, as well as the associated dynamics of methylation changes. Transition of the methylome throughout lifespan was not uniform, with many sites showing accelerated changes in late life. The associated genes and promoters were enriched for aging‐related pathways, pointing to a fundamental link between DNA methylation and control of the aging process. Calorie restriction both shifted the overall methylation pattern and was accompanied by its gradual age‐related remodeling, the latter contributing to the lifespan‐extending effect. With age, both highly and poorly methylated sites trended toward intermediate levels, and aging was accompanied by an accelerated increase in entropy, consistent with damage accumulation. However, the entropy effects differed for the sites that increased, decreased and did not change methylation with age. Many sites trailed behind, whereas some followed or even exceeded the entropy trajectory and altered the developmental DNA methylation pattern. The patterns we observed in certain genomic regions were conserved between humans and mice, suggesting common principles of functional DNA methylome remodeling and its critical role in aging. The highly resolved DNA methylome remodeling provides an excellent model for understanding systemic changes that characterize the aging process.  相似文献   
955.
Around the world, human populations have experienced large increases in average lifespan over the last 150 years, and while individuals are living longer, they are spending more years of life with multiple chronic morbidities. Researchers have used numerous laboratory animal models to understand the biological and environmental factors that influence aging, morbidity, and longevity. However, the most commonly studied animal species, laboratory mice and rats, do not experience environmental conditions similar to those to which humans are exposed, nor do we often diagnose them with many of the naturally occurring pathologies seen in humans. Recently, the companion dog has been proposed as a powerful model to better understand the genetic and environmental determinants of morbidity and mortality in humans. However, it is not known to what extent the age‐related dynamics of morbidity, comorbidity, and mortality are shared between humans and dogs. Here, we present the first large‐scale comparison of human and canine patterns of age‐specific morbidity and mortality. We find that many chronic conditions that commonly occur in human populations (obesity, arthritis, hypothyroidism, and diabetes), and which are associated with comorbidities, are also associated with similarly high levels of comorbidity in companion dogs. We also find significant similarities in the effect of age on disease risk in humans and dogs, with neoplastic, congenital, and metabolic causes of death showing similar age trajectories between the two species. Overall, our study suggests that the companion dog may be an ideal translational model to study the many complex facets of human morbidity and mortality.  相似文献   
956.
957.
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α.  相似文献   
958.
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss.  相似文献   
959.
Mutations in the human LMNA gene cause a collection of diseases known as laminopathies. These include myocardial diseases that exhibit age‐dependent penetrance of dysrhythmias and heart failure. The LMNA gene encodes A‐type lamins, intermediate filaments that support nuclear structure and organize the genome. Mechanisms by which mutant lamins cause age‐dependent heart defects are not well understood. To address this issue, we modeled human disease‐causing mutations in the Drosophila melanogaster Lamin C gene and expressed mutant Lamin C exclusively in the heart. This resulted in progressive cardiac dysfunction, loss of adipose tissue homeostasis, and a shortened adult lifespan. Within cardiac cells, mutant Lamin C aggregated in the cytoplasm, the CncC(Nrf2)/Keap1 redox sensing pathway was activated, mitochondria exhibited abnormal morphology, and the autophagy cargo receptor Ref2(P)/p62 was upregulated. Genetic analyses demonstrated that simultaneous over‐expression of the autophagy kinase Atg1 gene and an RNAi against CncC eliminated the cytoplasmic protein aggregates, restored cardiac function, and lengthened lifespan. These data suggest that simultaneously increasing rates of autophagy and blocking the Nrf2/Keap1 pathway are a potential therapeutic strategy for cardiac laminopathies.  相似文献   
960.
Defects in stress response are main determinants of cellular senescence and organism aging. In fibroblasts from patients affected by Hutchinson–Gilford progeria, a severe LMNA‐linked syndrome associated with bone resorption, cardiovascular disorders, and premature aging, we found altered modulation of CDKN1A, encoding p21, upon oxidative stress induction, and accumulation of senescence markers during stress recovery. In this context, we unraveled a dynamic interaction of lamin A/C with HDAC2, an histone deacetylase that regulates CDKN1A expression. In control skin fibroblasts, lamin A/C is part of a protein complex including HDAC2 and its histone substrates; protein interaction is reduced at the onset of DNA damage response and recovered after completion of DNA repair. This interplay parallels modulation of p21 expression and global histone acetylation, and it is disrupted by LMNAmutations leading to progeroid phenotypes. In fact, HGPS cells show impaired lamin A/C‐HDAC2 interplay and accumulation of p21 upon stress recovery. Collectively, these results link altered physical interaction between lamin A/C and HDAC2 to cellular and organism aging. The lamin A/C‐HDAC2 complex may be a novel therapeutic target to slow down progression of progeria symptoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号