首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2263篇
  免费   210篇
  国内免费   14篇
  2024年   1篇
  2023年   49篇
  2022年   50篇
  2021年   116篇
  2020年   143篇
  2019年   128篇
  2018年   78篇
  2017年   74篇
  2016年   66篇
  2015年   111篇
  2014年   128篇
  2013年   152篇
  2012年   110篇
  2011年   143篇
  2010年   120篇
  2009年   116篇
  2008年   138篇
  2007年   139篇
  2006年   94篇
  2005年   83篇
  2004年   77篇
  2003年   69篇
  2002年   56篇
  2001年   44篇
  2000年   28篇
  1999年   30篇
  1998年   26篇
  1997年   20篇
  1996年   19篇
  1995年   7篇
  1994年   20篇
  1993年   11篇
  1992年   7篇
  1991年   3篇
  1990年   9篇
  1989年   3篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有2487条查询结果,搜索用时 375 毫秒
951.
Reduced insulin/IGF-1 signalling and human longevity   总被引:6,自引:0,他引:6  
Evidence is accumulating that aging is hormonally regulated by an evolutionarily conserved insulin/IGF-1 signalling (IIS) pathway. Mutations in IIS components affect lifespan in Caenorhabditis elegans, Drosophila melanogaster and mice. Most long-lived IIS mutants also show increased resistance to oxidative stress. In D. melanogaster and mice, the long-lived phenotype of several IIS mutants is restricted to females. Here, we analysed the relationship between IIS signalling, body height and longevity in humans in a prospective follow-up study. Based on the expected effects (increased or decreased signalling) of the selected variants in IIS pathway components (GHRHR, GH1, IGF1, INS, IRS1), we calculated composite IIS scores to estimate IIS pathway activity. In addition, we analysed the relative impact on lifespan and body size of the separate variants in multivariate models. In women, lower IIS scores are significantly associated with lower body height and improved old age survival. Multivariate analyses showed that these results were most pronounced for the GH1 SNP, IGF1 CA repeat and IRS1 SNP. In females, for variant allele carriers of the GH1 SNP, body height was 2 cm lower (P = 0.007) and mortality 0.80-fold reduced (P = 0.019) when compared with wild-type allele carriers. Thus, in females, genetic variation causing reduced IIS activation is beneficial for old age survival. This effect was stronger for the GH1 SNP than for variation in the conserved IIS genes that were found to affect longevity in model organisms.  相似文献   
952.
It is likely that cytosolic Ca2+ elevations have played a part in eukaryotic signal transduction for about the last 2 Gyr, being mediated by a group of molecules which are collectively known as the [Ca2+]cyt signalling toolkit. Different eukaryotes often display strikingly similar [Ca2+]cyt signalling elevations, which may reflect conservation of toolkit components (homology) or similar constraints acting on different toolkits (homoplasy). Certain toolkit components, which are presumably ancestral, are shared by plants and animals, but some components are unique to photosynthetic organisms. We propose that the structure of modern plant [Ca2+]cyt signalling toolkits may be explained by their modular adaptation from earlier pathways.  相似文献   
953.
Research on legume nodule development has contributed greatly to our current understanding of plant-microbe interactions. However, the factors that orchestrate root nodule senescence have received relatively little attention. Accumulating evidence suggests that redox signals contribute to the establishment of symbiosis and senescence. Although degenerative in nature, nodule senescence is an active process programmed in development in which reactive oxygen species (ROS), antioxidants, hormones and proteinases have key roles. Nodules have high levels of the redox buffers, ascorbate and glutathione, which are important in the nodulation process and in senescence. These metabolites decline with N-fixation as the nodule ages but the resultant decrease in redox buffering capacity does not necessarily lead to enhanced ROS or oxidative stress. We propose models by which ROS and antioxidants interact with hormones such as abscisic acid in the orchestration of nodule senescence.  相似文献   
954.
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.  相似文献   
955.
In this study we have investigated the effects of the small GTP-binding-protein Ras on the redox signalling of the human neuroblastoma cell line, SK-N-BE stably transfected with HaRas(Val12). The levels of reactive oxygen species (ROS) and superoxide anions were significantly higher in HaRas(Val12) expressing (SK-HaRas) cells than in control cells. The treatment of cells with 4-(2-aminoethyl) benzenesulfonylfluoride, a specific inhibitor of the membrane superoxide generating system NADPH oxidase, suppressed the rise in ROS and significantly reduced superoxide levels produced by SK-HaRas cells. Moreover, HaRas(Val12) induced the translocation of the cytosolic components of the NADPH oxidase complex p67(phox) and Rac to the plasma membrane. These effects depended on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK1/2) pathway, as the specific MEK inhibitor, PD98059, prevented HaRas-mediated increase in ROS and superoxide anions. In contrast, the specific phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and wortmannin were unable to reverse the effects of HaRas(Val12). Moreover, cholinergic stimulation of neuroblastoma cells by carbachol, which activated endogenous Ras/ERK1/2, induced a significant increase in ROS levels and elicited membrane translocation of p67(phox) and Rac. ROS generation induced by carbachol required the activation of ERK1/2 and PI3K. Hence, these data indicate that HaRas-induced ERK1/2 signalling selectively activates NADPH oxidase system in neuroblastoma cells.  相似文献   
956.
Neuropeptide F is the most abundant neuropeptide in parasitic flatworms and is analogous to vertebrate neuropeptide Y. This paper examines the effects of neuropeptide F on tetrathyridia of the cestode Mesocestoides vogae and provides preliminary data on the signalling mechanisms employed. Neuropeptide F (>/=10 microM) had profound excitatory effects on larval motility in vitro. The effects were insensitive to high concentrations (1 mM) of the anaesthetic procaine hydrochloride suggesting extraneuronal sites of action. Neuropeptide F activity was not significantly blocked by a FMRFamide-related peptide analog (GNFFRdFamide) that was found to inhibit GNFFRFamide-induced excitation indicating the occurrence of distinct neuropeptide F and FMRFamide-related peptide receptors. Larval treatment with guanosine 5'-O-(2-thiodiphosphate) trilithium salt prior to the addition of neuropeptide F completely abolished the excitatory effects indicating the involvement of G-proteins and a G-protein coupled receptor in neuropeptide F activity. Addition of guanosine 5'-O-(2-thiodiphosphate) following neuropeptide F had limited inhibitory effects consistent with the activation of a signalling cascade by the neuropeptide. With respect to Ca(2+) involvement in neuropeptide F-induced excitation of M. vogae larvae, the L-type Ca(2+)-channel blockers verapamil and nifedipine both abolished neuropeptide F activity as did high Mg(+) concentrations and drugs which blocked sarcoplasmic reticulum Ca(2+)-activated Ca(2+)-channels (ryanodine) and sarcoplasmic reticulum Ca(2+) pumps (cyclopiazonic acid). Therefore, both extracellular and intracellular Ca(2+) is important for neuropeptide F excitation in M. vogae. With respect to second messengers, the protein kinase C inhibitor chelerythrine chloride and the adenylate cyclase inhibitor MDL-2330A both abolished neuropeptide F-induced excitation. The involvement of a signalling pathway that involves protein kinase C was further supported by the fact that phorbol-12-myristate-13-acetate, known to directly activate protein kinase C, had direct excitatory effects on larval motility. Although neuropeptide F is structurally analogous to neuropeptide Y, its mode-of-action in flatworms appears quite distinct from the common signalling mechanism seen in vertebrates.  相似文献   
957.
958.
Murad F 《Bioscience reports》2004,24(4-5):452-474
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870’s. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians’ therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.  相似文献   
959.
960.
We investigate a two-dimensional lattice model representation of intercellular Ca2+ signalling in a population of epithelial cells coupled by gap junctions. The model is based on and compared with Ca2+ imaging data from globally bradykinin-stimulated MDCK-I (Madin-Darby canine kidney)-I cell layers. We study large-scale synchronization of relevance to our laboratory experiments. The system is found to express a wealth of dynamics, including quasiperiodic, chaotic and multiply-periodic behaviour for intermediate couplings. We take a particular interest in understanding the role of pacemaker cells in the synchronization process. It has been hypothesized that a few highly hormone-sensitive cells control the collective frequency of oscillation, which is close to the natural frequencies (without coupling) of these cells. The model behaviour is consistent with the conjectures of the pacemaker cell hypothesis near the critical coupling where the cells lock onto a single frequency. However, the simulations predict that the frequency in globally connected systems decreases with increasing coupling. It is found that a pacemaker is not defined by its natural frequency alone, but that other intrinsic or local factors must be considered. Inclusion of partly sensitized cells that do not oscillate autonomously in the cell layer increases the coupling necessary for global synchronization. For not excessively high coupling, these cells oscillate irregularly and with distinctive lower frequencies. In summary, the present study shows that the frequency of synchronized oscillations is not dictated by one or few fast-responding cells. The collective frequency is the result of a two-way communication between the phase-advanced pacemaker and its environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号