首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12532篇
  免费   469篇
  国内免费   874篇
  2024年   19篇
  2023年   93篇
  2022年   143篇
  2021年   184篇
  2020年   162篇
  2019年   241篇
  2018年   212篇
  2017年   191篇
  2016年   187篇
  2015年   294篇
  2014年   398篇
  2013年   586篇
  2012年   379篇
  2011年   480篇
  2010年   342篇
  2009年   500篇
  2008年   583篇
  2007年   637篇
  2006年   707篇
  2005年   586篇
  2004年   539篇
  2003年   522篇
  2002年   453篇
  2001年   457篇
  2000年   420篇
  1999年   408篇
  1998年   437篇
  1997年   344篇
  1996年   294篇
  1995年   294篇
  1994年   281篇
  1993年   321篇
  1992年   257篇
  1991年   225篇
  1990年   242篇
  1989年   195篇
  1988年   162篇
  1987年   135篇
  1986年   128篇
  1985年   171篇
  1984年   170篇
  1983年   69篇
  1982年   98篇
  1981年   68篇
  1980年   65篇
  1979年   37篇
  1978年   26篇
  1977年   29篇
  1976年   22篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
棉花4-香豆酸辅酶A连接酶基因克隆及原核表达   总被引:4,自引:0,他引:4  
本研究从棉花中克隆了一个4CL基因,命名为Gh4CL2(GenBank登录号为FJ848870)。研究结果表明:Gh4CL2基因cDNA全长2332bp,具有一个1725bp的开放阅读框,5′非编码区为64bp,3′非编码区为543bp,编码574个氨基酸,预测分子量约为62.106kD,等电点为5.94。氨基酸同源性分析发现,Gh4CL2与来自白杨、大豆和紫草的4CL一致性较高。进一步研究Gh4CL2基因的功能,构建了该基因的原核表达载体pET-28a-4CL2,经酶切鉴定后转化到大肠杆菌BL21(DE3)中。SDS-PAGE分析表明,最佳诱导表达条件为0.5mmol/LIPTG在37℃下诱导4h,重组蛋白主要以包涵体形式出现。  相似文献   
992.
采用了野外观察和光学显微技术对淫羊藿属(Epimedium L.)7种植物的雌蕊及果实的形态结构进行了研究。结果表明:7种植物的心皮数目为1个,胎座类型为边缘胎座,果实类型为蓇葖果。比较了《中国植物志》等文献的记载,订正了文献对7个种"侧膜胎座"或"蒴果"的记述,并对淫羊藿属的相应特征提出观点。  相似文献   
993.
以新疆十字花科典型早春短命植物抱茎独行菜(Lepidium perfoliatum L.)为材料,分别在不同环境、不同土壤基质及不同春化时间下栽培,以探讨环境因素对抱茎独行菜抽薹开花的影响。结果表明:抱茎独行菜种子在蛭石∶珍珠岩(3∶1)中的出苗率显著高于营养土和自然生境土壤,基质对抱茎独行菜植株是否抽薹无显著影响,但影响其抽薹的早晚及结实特性;人工4℃春化对3种不同栽培环境中于阳台生长植株的抽薹有明显促进作用,而对培养室及户外环境中栽培植株是否抽薹无显著影响;抱茎独行菜抽薹开花对光照和温度的响应最明显,光照时间由短变长与苗期一定时间的低温之间的相互作用是促使抱茎独行菜抽薹开花的关键因素。  相似文献   
994.
The lack of information about the movement of aluminum (Al) across the plasma membrane presents a significant barrier to the elucidation of resistance mechanisms which may involve exclusion of Al from the symplast. An understanding of mechanistic aspects of exclusion requires the estimation of symplastic Al levels. Such measurements may be achievable through the use of a kinetic approach. A kinetic protocol was developed to characterize the accumulation and distribution of Al in various cellular compartments in roots of wheat (Triticum aestivum L.). The kinetics of uptake and desorption were similar when Al was supplied as AIK(SO4)2 or as AlCl3. When both salts were supplied at low concentration (50 μM), Al bound to a purified cell wall fraction could be reduced to less than 10–20% of non-exchangeable Al, if roots were washed for 30 min in citric acid following exposure. In contrast, when AlK(SO4)2 was supplied at a high concentration (200 μM), a strong linear phase of uptake into cell wall material was observed, which accounted for approximately 48% of non-exchangeable Al in roots. These results suggest that the use of low concentrations of Al in simple salt solutions is required to minimize accumulation of non-exchangeable Al in the apoplasm. A series of multiple-desorption experiments confirmed that citric acid was effective in removing Al from the cell wall compartment of roots exposed to Al for short periods (3 h). However, long exposures (48 h) appeared to create conditions conducive to the accumulation of non-exchangeable Al in the cell wall. In experiments where uptake from solutions containing 50 μM AlCl3 was followed by desorption in citric acid, non-exchangeable Al in microsomal membrane fractions represented less than 4% of total non-exchangeable Al. Thus, we can exclude the plasma membrane and cell wall as major sites for accumulation of non-exchangeable Al in short exposure studies. Although we cannot provide unequivocal evidence for the localization of Al within the symplast, use of simple salt solutions followed by desorption in citric acid provides the best kinetic technique currently available for the quantitation of Al in the symplasm.  相似文献   
995.
Relationships between growth of osmotically stressed intact seedlings and polyribosome levels and water status of growing tissues were examined. Sudden exposure of barley (Hordeum vulgare L. cv. Arivat) roots to a solution of ?0.8 MPa polyethylene glycol caused leaf growth to stop almost immedately, but growth resumed at a much lower rate after 0.5–1 h. In the growing region of leaves, the polyribosome: total ribosome ratio of free (non-membrane-bound) ribosomes was significantly reduced after 15 min stress, but a decrease in the large polyribosome:total polyribosome ratio occurred only after 1–2 h. Membrane-bound and free polyribosome levels both decreased to 70% of unstressed control values after 4 h stress. Recovery of total polyribosomes occurred within 1 h after relief of 4 h stress, but required 3 h after relief of 24 h stress. Stress detectably reduced the water potential and osmotic potential of growing tissue within 0.5–1.0 h, and osmotic adjustment continued for up to 10 h. Recovery of water status was incomplete after 1 h relief of a 4 h stress. In contrast, expanded blade tissues of stressed plants underwent minor changes in water status and slow decreases in polyribosomes levels. These results confirm that growing tissues of barley leaves are selectively responsive to stress, and suggest that changes in growth, water status and polyribosome levels may be initiated by the same signal. Measurements of seedling growth, polyribosome levels and water status of growing tissues of barley and wheat (Triticum aestivum L. cv. Zaragoza) leaves, etiolated pea (Pisum sativum L. cv. Alaska) epicotyl and etiolated squash (Cucurbita pepo L. cv. Elite) hypocotyl stressed with polyethylene glycol solutions of ?0.3 to ?0.8 MPa for 12 h or more showed that polyribosome levels were highly correlated with seedling growth rate as well as with tissue water and osmotic potentials, while turgor remained unchanged. These results suggest that long-term growth of osmotically stressed plants may be limited by a reduced capacity for protein synthesis in growing tissues and is not dictated by turgor loss.  相似文献   
996.
Five hundred hydroxyproline-resistant cell lines were selected from cell cultures of wheat ( Triticum aestivum L. cv. Koga II) after plating on 10 to 30 m M hydroxyproline (Hyp) containing solid Gamborg B 5 medium. All selected cell lines from 30 m M Hyp-medium contained increased (up to 17-fold) levels of free proline. Seventy-four cell lines were transferred to Hyp-free medium and subcultivated 25 times, for 12 months altogether, after which 80% still had increased proline levels. Fourteen cell lines with increased proline levels were further investigated in liquid media with regard to their frost tolerance, which was measured by means of electrolyte leakage. Ten of them showed increased fros tolerance, with LT 50 values as low as 2.7°C below that of the wild type (-4.7°C). Besides increased proline levels and increased percentage dry weight, the Hyp-resistant cell lines had lower osmotic potentials. Osmotic potentials correlated better than levels of free proline with the increase in frost tolerance.  相似文献   
997.
Seven-day-old seedlings of winter wheat (Triticum aestivum L.) in a growth chamber were exposed to ultraviolet-B (UV-B) irradiation for 20 days with daily biologically effective (BE) UV-B irradiation (UV-BBE) at low (4.2 kJ m−2 day−1, LUVB) and high (7.0 kJ m−2 day−1, HUVB) levels. The UV-B irradiated seedlings and the control without UV-B irradiation were then subjected to freezing stress at −6 °C for 6 h and recovered to 20 °C with gradually increased temperature, to investigate the effects of UV-B irradiation on freezing tolerance. During the UV-B exposure, both LUVB and HUVB irradiated seedlings had lower half lethal temperature (LT50) values in comparison with the control, and LUVB more effectively decreased the LT50 values than HUVB. Moreover, foliar concentrations of thiobarbituric acid reactive substances (TBARS) in the UV-B irradiated seedlings were lower than that of control after recovery from freezing stress. Hydrogen peroxide (H2O2) rapidly increased after UV-B exposure, as did activity of superoxide dismutase (SOD). After recovery from freezing stress, activities of catalase (CAT), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased in both LUVB and HUVB leaves, whereas activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) significantly increased only in the LUVB leaves. Furthermore, the ascorbic acid (AsA) concentration and reduced-to-oxidized ascorbate ratio (AsA/DHA) increased in the LUVB leaves both at the end of UV-B exposure and after recovery from freezing stress. However, the reduced glutathione (GSH) concentration, together with reduced-to-oxidized glutathione ratio (GSH/GSSG) increased in both LUVB and HUVB leaves after recovery from freezing stress. UV-B irradiation increased freezing tolerance in winter wheat seedlings, and this response appears to involve the scavenging enzymes and compounds in the antioxidant defense systems, particularly the ascorbate–glutathione cycle.  相似文献   
998.
Zea mays is cultivated in the Mediterranean regions where summer drought may lead to photoinhibition when irrigation is not available. In this work the response of maize to water stress was evaluated by gas exchange measurements at the canopy and leaf level. Leaf gas exchange was assessed before, during and after water stress, while canopy turbulent fluxes of mass and energy were performed on a continuous basis. In the early growth period, a linear increment of net ecosystem photosynthetic rate (P NE) to incoming of photosynthetic photon flux density (PPFD) was found and net leaf photosynthetic rate (P NL) showed the tendency to saturate under high irradiance. During water stress, the relationship between P NE and PPFD became curvilinear and both P NE and P NL saturated in a range between 1,000 and 1,500 μmol (photons) m−2 s−1. Leaf water potential (ψl) dropped from −1.50 to −1.88 MPa during water stress, indicating that leaf and canopy gas exchanges were limited by stomatal conductance. With the restoration of irrigation, P NE, P NL and ψl showed a recovery, and P NE and P NL reached the highest values of whole study period. Leaf area index (LAI) reached a value of 3.0 m2 m−2. The relationship between P NE and PPFD remained curvilinear and P NE values were lower than those of a typical well-irrigated maize crop. The recovery in P NE and P NL after stress, and ψl values during stress indicate that the photosynthetic apparatus was not damaged while soil moisture stress after-effects resulted in a sub-optimal LAI values, which in turn depressed P NE.  相似文献   
999.
C(4)-type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters - the maximum catalytic rate of the enzyme ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (V(pmax)) and the maximum electron transport rate (J(max)) - were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (A(n)) versus intercellular air space CO(2) concentrations (C(i)), and A(n) versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15-40 degrees C. Values of V(cmax), V(pmax) and J(max) were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of V(pmax) and J(max) obtained at 25 degrees C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of V(cmax), V(pmax) and J(max) are then proposed. These parameters should be further tested with C(4) plants for validation. Other model key parameters such as the mesophyll cell conductance to CO(2) (g(i)), the bundle sheath cells conductance to CO(2) (g(bs)) and Michaelis-Menten constants for CO(2) and O(2) (K(c), K(p) and K(o)) also vary with temperature and should be better parameterized.  相似文献   
1000.
Osteoporosis is a major complication in patients with diabetes mellitus (DM), particularly in those with insulin dependency. Recently, many therapeutic effects ofNigella sativa L. (NS) extracts have been exhibited such as anti-inflammatory, antitumor, and antidiabetic with clinical and experimental studies. Mechanical strength in the femur and vertebrae increases with human parathyroid hormone (hPTH) treatment. The aim of the present study was to test the hypothesis that combined treatment with NS and hPTH is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, and biomechanical behavior using the finite element method (FEM) in insulin-dependent diabetic rats. In the mechanical analysis, five rat bones (control, diabetic diabetic NS treated, diabetic hPTH treated, and diabetic NS + hPTH treated) have been studied for bending analysis using the finite element analysis program ANSYS. Combined treatment of NS and hPTH was more effective on bone histomorphometry and mechanical strength than treatment with NS or hPTH alone for streptozotocin-induced diabetic osteopenia, which notably decreased bone volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号