首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   75篇
  国内免费   29篇
  373篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   23篇
  2020年   26篇
  2019年   24篇
  2018年   15篇
  2017年   28篇
  2016年   19篇
  2015年   25篇
  2014年   43篇
  2013年   37篇
  2012年   15篇
  2011年   10篇
  2010年   14篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   15篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有373条查询结果,搜索用时 0 毫秒
71.
72.
Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth‐derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence that the piggyBac transposon also functions in plant cells. To demonstrate the use of the piggyBac transposon for effective marker excision in plants, we designed a transposition assay system that allows the piggyBac transposition to be visualized as emerald luciferase (Eluc) luminescence in rice cells. The Eluc signal derived from piggyBac excision was observed in hyperactive piggyBac transposase‐expressing rice calli. Polymerase chain reaction, Southern blot analyses and sequencing revealed the efficient and precise transposition of piggyBac in these calli. Furthermore, we have demonstrated the excision of a selection marker from a reporter locus in T0 plants without concomitant re‐integration of the transposon and at a high frequency (44.0% of excision events), even in the absence of negative selection.  相似文献   
73.
Inter‐vascular transfer in rice (Oryza sativa) nodes is required for delivering mineral elements to developing tissues, which is mediated by various transporters in the nodes. However, the effect of these transporters on distribution of mineral elements in the nodes at a cellular level is still unknown. Here, we established a protocol for bioimaging of multiple elements at a cellular level in rice node by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS), and compared the mineral distribution profile between wild‐type (WT) rice and mutants. Both relative comparison of mineral distribution normalized by endogenous 13C and quantitative analysis using spiked standards combined with soft ablation gave valid results. Overall, macro‐nutrients such as K and Mg were accumulated more in the phloem region, while micro‐nutrients such as Fe and Zn were highly accumulated at the inter‐vascular tissues of the node. In mutants of nodal Zn transporter OsHMA2, Zn localization pattern in the node tissues did not differ from that of WT; however, Zn accumulation in the inter‐vascular tissues was lower in uppermost node I but higher in the third upper node III compared with the WT. In contrast, Si deposition in the mutants of three nodal Si transporters Lsi2, Lsi3 and Lsi6 showed different patterns, which are consistent with the localization of these transporters. This improved LA‐ICP‐MS analysis combined with functional characterization of transporters will provide further insight into mineral element distribution mechanisms in rice and other plant species.  相似文献   
74.
DAVID SHOEMAKER 《Bioethics》2010,24(9):481-489
It has long been thought that certain key bioethical views depend heavily on work in personal identity theory, regarding questions of either our essence or the conditions of our numerical identity across time. In this paper I argue to the contrary, that personal identity is actually not significant at all in this arena. Specifically, I explore three topics where considerations of identity are thought to be essential – abortion, definition of death, and advance directives – and I show in each case that the significant work is being done by a relation other than identity.  相似文献   
75.
Chronobiological disruptions, including shift work, have been linked to a number of disorders such as fatigue and diabetes. Additionally, there is evidence to support that exercise cannot only counteract fatigue and the onset of diabetes, but also alleviate the other negative symptoms associated with shift work. Therefore, the present study investigated the effects of wheel running and monthly 6-h phase advances on the circadian locomotor activity patterns and glucose and insulin levels in C57BL6/J mice. 6-h phase advances produced decreases in fasting glucose and increases in insulin, and wheel-running was able to alleviate the spike in insulin secretion. Additionally, mice experiencing the shift increased their food intake, despite having no change in body mass. Circadian wheel-running activity was also altered in phase-advanced mice. These results provide further evidence that chronobiological disruptions can lead to alterations in physiology and behavior, and that exercise can alleviate some of those symptoms.  相似文献   
76.
镰刀菌真菌毒素产生与调控机制研究进展   总被引:4,自引:0,他引:4  
张岳平 《生命科学》2011,(3):311-316
镰刀菌是一种重要的植物病原菌,给世界范围内农作物生产带来巨大破坏。除导致产量下降外,由其产生的镰刀菌真菌毒素能够污染农产品品质,给动物和人类食物安全造成严重隐患。单端孢霉烯族毒素(Trichothecenes)、伏马菌素(Fumonisin)和玉米赤霉烯酮(Zearalenone)是三种最重要的镰刀菌真菌毒素。镰刀菌真菌毒素的生物合成与生产受到体内一系列相关功能基因的调控;此外,pH值、碳氮比等环境条件也能影响真菌毒素的产量。本文简述了镰刀菌真菌毒素在产生机理、主要分类、致病性以及调控因素等方面的研究进展。  相似文献   
77.
Telomere truncation has been shown to be an efficient technology for the creation of mini-chromosomes that can be used as artificial chromosome platforms for genetic engineering. Artificial chromosome-based genetic engineering is considered to be superior to the existing techniques of randomized gene integration by Agrobacterium or biolistic-mediated genetic transformation. It organizes multiple transgenes as a unique genetic linkage block for subsequent manipulations in breeding. Telomere truncation technology relies on three components: the telomere sequence that mediates chromosomal truncation, a selection marker that allows the selection of transgenic events, and a site-specific recombination system that can be used to accept future genes into the mini-chromosome by gene targeting. These elements are usually pre-assembled before transformation, a process that is both time and labor consuming. We found in this research that the three elements could be mixed to transform plant cells in a biolistic transformation, and produced efficient chromosomal truncations and mini-chromosomes in rice. This system will allow rapid construction of mini-chromosomes with a flexible selection of resistant markers, site-specific recombination systems and other desirable elements. In addition, a rice telotrisomic line was used as the starting material for chromosomal truncations. Mini-chromosomes from the truncations of both the telocentric chromosome and other chromosomes were recovered. The mini-chromosomes remained stable during 2 years of subculture. The construction of mini-chromosomes in rice, an economically important crop, will provide a platform for future artificial chromosome-based genetic engineering of rice for stacking multiple genes.  相似文献   
78.
中国植物花粉形态的研究进展   总被引:6,自引:0,他引:6  
中国植物花粉形态研究经历了3个发展阶段;从1953年建立国内第一个孢粉学实验室到1960年我国第一部花粉形态学专著的出版为起步阶段;1961-1980年由于历史的原因,国内的研究发展较慢;80年代以来,中国植物花粉形态学研究进入了一个高速发展阶段。迄今已系统研究过花粉形态的在中国裸子植物中占63.64%。在双子叶植物中占36.36%,在单子叶植物中占33.33%。  相似文献   
79.
预警系统模型   总被引:4,自引:0,他引:4  
本文利用物元、可拓集合、经典域、节域、关联函数等概念以及其它数学概念,建立预警系统模型,应用于缺血性中风预报,效果较好.  相似文献   
80.
Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC‐MS to identify candidate binding ligands. We optimized this method using ABA–PYL interactions and show that ABA co‐purifies with wild‐type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 μm , which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37 START domain‐related proteins, which resulted in the identification of ligands that co‐purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co‐purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号