首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   44篇
  国内免费   80篇
  1103篇
  2024年   1篇
  2023年   14篇
  2022年   14篇
  2021年   11篇
  2020年   22篇
  2019年   33篇
  2018年   25篇
  2017年   37篇
  2016年   25篇
  2015年   28篇
  2014年   45篇
  2013年   134篇
  2012年   28篇
  2011年   43篇
  2010年   29篇
  2009年   34篇
  2008年   35篇
  2007年   43篇
  2006年   39篇
  2005年   41篇
  2004年   38篇
  2003年   40篇
  2002年   35篇
  2001年   45篇
  2000年   19篇
  1999年   26篇
  1998年   9篇
  1997年   11篇
  1996年   14篇
  1995年   17篇
  1994年   23篇
  1993年   19篇
  1992年   26篇
  1991年   21篇
  1990年   6篇
  1989年   5篇
  1988年   8篇
  1987年   7篇
  1986年   2篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   13篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有1103条查询结果,搜索用时 0 毫秒
51.
In situ ellipsometry was employed to study adsorption from human palatal saliva (HPalS) in terms of dependence on surface wettability and saliva concentration ( ? 1%). Adsorbed amounts, kinetics, and elutability with buffer and sodium dodecyl sulphate (SDS) were determined. The low-molecular weight protein content of bulk HPalS was also investigated using two-dimensional gel electrophoresis, and this revealed the presence of a large group of proteins < 100 kDa in size. Adsorption to pure (hydrophilic) and methylated (hydrophobized) silica surfaces revealed that the total adsorbed amounts were greater on hydrophobized silica. Below concentrations of 0.5 and 0.25% saliva, adsorption was concentration dependent on hydrophobized and hydrophilic surfaces, respectively. The initial adsorption ( ? 30 min) was faster on hydrophobized surfaces. Addition of SDS removed more material than buffer rinsing on both surfaces. Analysis of the adsorption kinetics indicated that the presence of low-molecular weight proteins plays a role in adsorption from HPalS.  相似文献   
52.

The electrochemical polarization effect on early adsorption of Flavobacterium breve and Pseudomonas fluorescens P17 to platinum, titanium, stainless steel, copper, aluminum alloy and mild steel was studied. A well‐defined peak characterized the bacterial adsorption dependence on externally applied potential. Maximal adsorption occurred in the potential range of ‐0.5 to 0.5 V (SCE) for all tested metals. A shift of applied potential towards both a positive and a negative direction from the maximal adsorption potential (Emax,ad) was accompanied by a gradual decrease in bacterial adsorption. The extent of bacterial adsorption strongly depended on the nature of the metallic substratum and decreased accordingly as follows: platinum > titanium > stainless steel > aluminum alloy > carbon steel > copper. Adsorption on all tested metals was approximately two orders of magnitude higher with the relatively more hydrophobic F. breve compared to the less hydrophobic P. fluorescens P17. The effect of electrochemical polarization on the initial stages of bacterial adsorption onto metallic substrata is further discussed.  相似文献   
53.
In this article, surface coatings derived from homo-bifunctional tri(ethylene glycol) (EG3) and hexa(ethylene glycol) (EG6) molecules which have two terminal aldehyde groups are reported. These homo-bifunctional molecules can be used to functionalize amine-terminated surfaces through crosslinking one aldehyde group to surface amine groups, while leaving the other aldehyde group available for covalent immobilization of proteins. Best of all, after reducing remaining aldehyde groups on the surface with a reducing agent, sodium borohydride, the surface becomes oligo(ethylene glycol) (OEG)-terminated. The OEG-terminated surface can resist nonspecific protein adsorption, a feature that is often required for many biosensors and biomedical devices. Although some mixed self-assembled monolayers formed from two different organothiols also permit covalent protein immobilization and resist nonspecific protein adsorption, the procedure reported herein requires only one type of homo-bifunctional molecule and can be applied to both silicon and gold surfaces.  相似文献   
54.
Conditioning, ie the adsorption of proteins and other macromolecules, is the first process that occurs in the natural environment once a surface is immersed in seawater, but no information is available either regarding the conditioning of surfaces by artificial seawater or whether conditioning affects data obtained from laboratory assays. A range of self-assembled monolayers (SAMs) with different chemical terminations was used to investigate the time-dependent formation of conditioning layers in commercial and self-prepared artificial seawaters. Subsequently, these results were compared with conditioning by solutions in which zoospores of the green alga Ulva linza had been swimming. Spectral ellipsometry and contact angle measurements as well as infrared reflection absorption spectroscopy (IRRAS) were used to reveal the thickness and chemical composition of the conditioning layers. The extent that surface preconditioning affected the settlement of zoospores of U. linza was also investigated. The results showed that in standard spore settlement bioassays (45–60 min), the influence of a molecular conditioning layer is likely to be small, although more substantial effects are possible at longer settlement times.  相似文献   
55.
Abstract

Chemical potentials of a homogeneous and an inhomogeneous Lennard-Jones fluid have been determined by molecular dynamics simulations on the vector computer CYBER 205 by applying essentially the fictitious test particle method of Widom. For the homogeneous fluid we find, contrary to the previous result of Guillot and Guissani, that the simulated chemical potential is independent of the particle number. The crucial point, however, is a sufficiently large cut-off radius in the evaluation of the Boltzmann factor. Comparing with our WCA-type perturbation theory, we get agreement in the chemical potentials within 0.1 kT up to the density n[sgrave]3 = 0.80 and a difference of 0.2 kT at n[sgrave]3 = 0.85. For the inhomogeneous case we consider a fluid in a cylindrical pore and integrate Widom's equation over a certain probe volume as suggested earlier by us. Chemical potentials are then calculated independently in five different probe volumes, which are cylindrical shells. The results agree well from the second to the fourth shell. Inaccuracies in the innermost cylinder can be easily explained by bad statistics. In the shell close to the wall the extremely high local density is responsible for the inaccuracies. Extending the probe volume over all cylindrical shells besides the one closest to the wall is thought to yield rather reliable results for the chemical potential. As a by-product of the simulations we also obtained diffusion coefficients, which are given in an appendix.  相似文献   
56.
Editorial     
Abstract

Grand canonical molecular dynamics (GCMD) simulations are used to study the adsorption and desorption of Lennard-Jones nitrogen in three slit pore junction models of microporous graphite. These networks consist of two narrow pores separated by a wider (cavity) pore. We report results for cases where the narrow pore has a width of only two or three molecular diameters. Using the GCMD technique, a novel freezing transition is observed which results in pore blocking in the narrow pores of the network, which are less than 1 nm wide. This freezing results from the adsorption energy barrier at the junction between the narrow and wider pores. This type of pore blocking could account for the apparent increase in pore volume with increasing temperature that has been experimentally observed in microporous graphite systems. For networks in which the narrower pores are somewhat larger, with a width of 1.28 nm, this pore blocking effect is much reduced, and adsorbate molecules enter and fill the central cavity. In such cases, however, desorption is incomplete, some residual adsorbate remaining in the central cavity even at the lowest pressures.  相似文献   
57.
Grand canonical Monte Carlo and equilibrium molecular dynamics simulations were used to assess the performance of an rht-type metal–organic framework (MOF), Cu-TDPAT, in adsorption-based and membrane-based separation of CH4/H2, CO2/CH4 and CO2/H2 mixtures. Adsorption isotherms and self-diffusivities of pure gases and binary gas mixtures in Cu-TDPAT were computed using detailed molecular simulations. Several properties of Cu-TDPAT such as adsorption selectivity, working capacity, diffusion selectivity, gas permeability and permeation selectivity were computed and compared with well-known zeolites and MOFs. Results showed that Cu-TDPAT is a very promising adsorbent and membrane material especially for separation of CO2 and it can outperform traditional zeolites and MOFs such as DDR, MFI, CuBTC, IRMOF-1 in adsorption-based CO2/CH4 and CO2/H2 separations.  相似文献   
58.
In this paper, we investigate the adsorption mechanisms at the interface between carbon nanotubes and metal electrodes that can influence the Schottky barrier (SB). We developed a theoretical model based on the first-principles density functional theory for the interaction of an armchair single-wall carbon nanotube (SWNT) with either Au(111) or Pd(111) surface. We considered the side-wall contact by modelling the full SWNT as well as the end-contact geometry using the graphene ribbon model to mimic the contact with very large diameter nanotubes. Strong interaction has been found for the Pd–SWNT interface where the partial density of states (DOS) shows that d-orbitals of palladium are dominant at the Fermi energy so that the hybrid Pd-orbitals have the correct symmetry to overlap with π-electrons and form covalent bonds. The SWNT can only be physisorbed on the gold surface for which the contribution to the DOS of the d-orbitals is very low. Moreover, the filling of antibonding states makes the Au–SWNT bond unstable. The average and ‘atom to atom’ energy barriers at the interface have been evaluated. The matching of open-edge carbon dimers with metal lattice in the end-contact geometry is more likely for large diameter SWNTs and this makes lower the SB at the interface.  相似文献   
59.
In the present work, the adsorption kinetics of extended ligands on DNA duplexes at small fillings when molecules of DNA duplexes are on the underlayer within diffusion layer has been investigated. Both diffusion of ligands in solution (diffusion stage) and adsorption of ligands (kinetic stage) are taken into consideration at adsorption of ligands on DNA duplexes. Nonlinear system of differential equations describing adsorption of ligands where not only diffusion stage but also kinetic stage is taken into account, is obtained, moreover the equations allow localizing duplexes in arbitrary place within diffusion layer. Numeric solution of the equations makes possible to investigate the filling kinetics of DNA duplexes by ligands depending on parameters controlling adsorption process. It has been shown that depending on relation between adsorption parameters different kinetic regimes of adsorption – kinetic, complex, and diffusion regimes may be realized.  相似文献   
60.
The interactions of mouse thymocytes with unilamellar phospholipid vesicles comprised of dimyristyl lecithin (DML), dipalmitoyl lecithin (DPL), dioleoyl lecithin (DOL), and egg yolk lecithin (EYL) were examined in vitro.

In cells treated with [3H]DML or [3H]DPL vesicles, electron microscope (EM) autoradiographic analysis showed most of the radioactive lipids to be confined to the cell surface. Transmission EM studies showed the presence of intact vesicles (DPL) and collapsed or ruptured vesicle fragments (DML) adsorbed to the surfaces of treated cells. In cells treated with DPL vesicles containing a watersoluble dye (6-carboxyfluorescein; 6-CF), most of the fluorescent vesicles were localized at the periphery of the treated cells. Furthermore, substantial fractions of the cell-associated DPL and DML could be released by a mild trypsinization without damaging the cells. These results suggest that the uptake of DML and DPL is primarily due to vesicle-cell adsorption. Such an adsorption process appears to be enhanced at or below the thermotropic-phase transition temperature of the vesicle lipid. Under certain conditions these adherent vesicles also formed patches or caps on the cell surface.

In cells treated with DOL or EYL vesicles, transmission EM and EM autoradiography showed relatively little exogenous vesicle lipid located at the cell surface. Thymocytes incubated (37°C) with [14C] EYL vesicles containing a trapped marker, [3H]inulin, incor porated both isotopes at identical rates. In separate experiments it was found that this marker was located inside the treated cells. Thymocytes treated with DOL vesicles containing 6-CF exhibited a uniform and diffuse distribution of dye in the internal volume of the cells. Little cell-associated EYL or DOL could be released by trypsinization. Evidence against endocytosis of intact vesicles as a major pathway of vesicle uptake is also presented. These observations, coupled with the demonstration of vesicle-cell lipid exchange as a minor component of vesicle uptake suggest that incorporation of EYL and DOL vesicles by thymocytes is primarily by vesicle-cell fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号