排序方式: 共有262条查询结果,搜索用时 15 毫秒
31.
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss. 相似文献
32.
Nathalie Boulet Anaïs Briot Valentin Jargaud David Estève Anne Rémaury Chloé Belles Pénélope Viana Jessica Fontaine Lucie Murphy Catherine Déon Marie Guillemot Catherine Pech Yaligara Veeranagouda Michel Didier Pauline Decaunes Etienne Mouisel Christian Carpéné Jason S. Iacovoni Alexia Zakaroff-Girard Jean-Louis Grolleau Jean Galitzky Séverine Ledoux Jean-Claude Guillemot Anne Bouloumié 《Aging cell》2023,22(3):e13776
33.
34.
35.
Cooke PS Holsberger DR Cimafranca MA Meling DD Beals CM Nakayama K Nakayama KI Kiyokawa H 《Obesity (Silver Spring, Md.)》2007,15(6):1400-1408
Objective: The etiology of some obesity may involve adipocyte hyperplasia. However, the role of adipocyte number in establishing adipose mass is unclear. Cyclin‐dependent kinase inhibitor p27 regulates activity of cyclin/cyclin‐dependent kinase complexes responsible for cell cycle progression. This protein is critical for establishing adult adipocyte number, and p27 knockout increases adult adipocyte number. The SCF (for Skp1‐Cullin‐F‐box protein) complex targets proteins such as p27 for ubiquitin‐proteosome degradation; the F box protein S phase kinase‐associated protein 2 (Skp2), a component of the SCF complex, specifically recognizes p27 for degradation. We used Skp2 knockout (Skp2?/?) mice to test whether Skp2 loss decreased adipose mass and adipocyte number. Research Methods and Procedures: We measured body weight, adipose mass, adipocyte diameter and number, and glucose tolerance in wild‐type (WT), Skp2?/?, and p27?/?Skp2?/? mice. Mouse embryo fibroblasts (MEFs) from WT and Skp2?/? fetuses were differentiated to determine whether Skp2 directly affected adipogenesis. Results: Skp2?/? mice had a 50% decrease in both subcutaneous and visceral fat pad mass and adipocyte number; these decreases exceeded those in body weight, kidney, or muscle. To test the hypothesis that Skp2 effects on adipocyte number involved p27 accumulation, we used p27?/?Skp2?/? double knockout mice. The Skp2?/? decrements in adipocyte number and fat pad mass were totally reversed in p27?/?Skp2?/? mice. Adipogenesis was inhibited in MEFs from Skp2?/? vs. WT mice, and this inhibition was absent in MEFs from p27?/?Skp2?/? mice. Discussion: Our results indicate that Skp2 regulates adipogenesis and ultimate adipocyte number in vivo; thus, Skp2 may contribute to obesity involving adipocyte hyperplasia. 相似文献
36.
Up-regulation of adipogenin, an adipocyte plasma transmembrane protein, during adipogenesis 总被引:1,自引:0,他引:1
Hong YH Hishikawa D Miyahara H Tsuzuki H Nishimura Y Gotoh C Choi KC Hokari Y Takagi Y Lee HG Cho KK Roh SG Sasaki S 《Molecular and cellular biochemistry》2005,276(1-2):133-141
Until now, the various proteins highly expressed in adipose tissues have been identified and characterized by traditional gene cloning techniques. However, methods of computer analysis have been developed to compare the levels of expression among various tissues, and genes whose expression levels differ significantly between tissues have been found. Among these genes, we report on the possible function of a new adipose-specific gene, showed higher expression in adipose tissue through ‘Search Expression’ on Genome Institute of Norvartis Research Foundation (GNF) SymAtlas v0.8.0. This database has generated and analyzed gene expression of each gene in diverse samples of normal tissues, organs, and cell lines. This newly discovered gene product was named adipogenin because of its role in stimulating adipocyte differentiation and development. Adipogenin mRNA was highly expressed in four different fat depots, and exclusively expressed in adipocytes isolated from adipose tissues. The level of adipogenin mRNA was up-regulated in the subcutaneous and visceral adipose tissues of mice fed a high-fat diet compared to those on the control diet. The expression of adipogenin mRNA is dramatically elevated during adipocyte differentiation of 3T3-L1 cells. Troglitazone, which up-regulated peroxisome proliferators-activated receptor γ2 (PPAR-γ2) expression, increased adipogenin mRNA expression, although this gene was down-regulated by retinoic acid. Confocal image analyses of green-fluorescent protein-adipogenin (pEGFP-adipogenin) transiently expressed in 3T3-L1 adipocytes showed that adipogenin was strictly localized to membranes and was absent from the cytosol. Moreover, small interfering RNA (siRNA) mediated a reduction of adipogenin mRNA in 3T3-L1 cells and blocked the process of adipocyte differentiation. These results indicate that adipogenin, an adipocyte-specific membrane protein, may be involved with adipogenesis, as one of the regulators of adipose tissue development.Yeon-Hee Hong and Daisuke Hishikawa contributed equally to this work 相似文献
37.
Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications 下载免费PDF全文
《Biological reviews of the Cambridge Philosophical Society》2018,93(2):1145-1164
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT. 相似文献
38.
39.
Region‐specific effects of oestradiol on adipose‐derived stem cell differentiation in post‐menopausal women 下载免费PDF全文
Kimberly A. Cox‐York Christopher B. Erickson Rocio I Pereira Daniel H. Bessesen Rachael E. Van Pelt 《Journal of cellular and molecular medicine》2017,21(4):677-684
The goal of this study was to determine the effect of acute transdermal 17β‐oestradiol (E2) on the adipogenic potential of subcutaneous adipose‐derived stem cells (ASC) in post‐menopausal women. Post‐menopausal women (n = 11; mean age 57 ± 4.5 years) were treated for 2 weeks, in a randomized, cross‐over design, with transdermal E2 (0.15 mg) or placebo patches. Biopsies of abdominal (AB) and femoral (FEM) subcutaneous adipose tissue (SAT) were obtained after each treatment and mature adipocytes were analysed for cell size and ASC for their capacity for proliferation (growth rate), differentiation (triglyceride accumulation) and susceptibility to tumour necrosis factor alpha‐induced apoptosis. Gene expression of oestrogen receptors α and β (ESR1 and ESR2), perilipin 1 and hormone‐sensitive lipase (HSL), was also assessed. In FEM SAT, but not AB SAT, 2 weeks of E2 significantly (P = 0.03) increased ASC differentiation and whole SAT HSL mRNA expression (P = 0.03) compared to placebo. These changes were not associated with mRNA expression of oestrogen receptors α and β, but HSL expression was significantly increased in FEM SAT with transdermal E2 treatment. Adipose‐derived stem cells proliferation and apoptosis did not change in either SAT depot after E2 compared with placebo. Short‐term E2 appeared to increase the adipogenic potential of FEM, but not AB, SAT in post‐menopausal women with possible implications for metabolic disease. Future studies are needed to determine longer term impact of E2 on regional SAT accumulation in the context of positive energy imbalance. 相似文献