首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   26篇
  国内免费   6篇
  2024年   2篇
  2023年   6篇
  2022年   12篇
  2021年   16篇
  2020年   21篇
  2019年   16篇
  2018年   16篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   21篇
  2013年   20篇
  2012年   19篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   9篇
  2007年   18篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1994年   1篇
  1992年   2篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
21.
Objective: To determine the effects of esculetin, a plant phenolic compound with apoptotic activity in cancer cells, on 3T3‐L1 adipocyte apoptosis and adipogenesis. Research Methods and Procedures: 3T3‐L1 pre‐confluent preadipocytes and lipid‐filled adipocytes were incubated with esculetin (0 to 800 μM) for up to 48 hours. Viability was determined using the Cell Titer 96 Aqueous One Solution cell proliferation assay; apoptosis was quantified by measurement of single‐stranded DNA. Post‐confluent preadipocytes were incubated with esculetin for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye; cells were also stained with Oil Red O for visual confirmation of effects on lipid accumulation. Results: In mature adipocytes, esculetin caused a time‐ and dose‐related increase in adipocyte apoptosis and a decrease in viability. Apoptosis was increased after only 6 hours by 400 and 800 μM esculetin (p < 0.05), and after 48 hours, as little as 50 μM esculetin increased apoptosis (p < 0.05). In preadipocytes, apoptosis was detectable only after 48 hours (p < 0.05) with 200 μM esculetin and higher concentrations. However, results of the cell viability assay indicated a reduction in preadipocyte number in a time‐ and dose‐related manner, beginning as early as 6 hours with 400 and 800 μM esculetin (p < 0.05). Esculetin also inhibited adipogenesis of 3T3‐L1 preadipocytes. Esculetin‐mediated inhibition of adipocyte differentiation occurred during the early, intermediate, and late stages of the differentiation process. In addition, esculetin induced apoptosis during the late stage of differentiation. Discussion: These findings suggest that esculetin can alter fat cell number by direct effects on cell viability, adipogenesis, and apoptosis in 3T3‐L1 cells.  相似文献   
22.
The requirement of Akt for cell proliferation and oncogenesis is mammalian target of rapamycin complex 1 (mTORC1) dependent. SV40 large T expression in Akt-deficient cells restores cell proliferation rate, but is insufficient for exiting contact inhibition and oncogene-induced anchorage-independent growth, because of a failure to promote Skp2 mRNA translation. Skp2 mRNA and protein are induced upon exiting contact inhibition, which enables entry into mitosis. While Skp2 mRNA is induced in Akt-deficient cells, it is not translated, preventing entry into mitosis. Restoring Skp2 expression in Akt-deficient cells is sufficient to restore exit from contact inhibition and oncogenesis. Skp2 mRNA translation is dependent on mTORC1 and the eukaryotic translation initiation factor 4E (eIF4E). Thus, the requirement of Akt for exiting contact inhibition is mediated by the induction of Skp2 mRNA translation in eIF4E-dependent mechanism. These results provide a new insight into the role of the Akt/mTORC1/eIF4E axis in tumourigenesis. Akt-dependent Skp2 mRNA translation is also required for mitotic clonal expansion (MCE)--the earliest event in adipogenesis. Skp2 re-expression in Akt-deficient preadipocytes, which are impaired in adipogenesis, is sufficient to restore adipogenesis. These results uncover the mechanism by which Akt mediates adipogenesis.  相似文献   
23.
24.
25.
The prevalence of obesity and its associated metabolic diseases worldwide has focused attention on understanding the mechanisms underlying adipogenesis. The nuclear receptor PPARgamma has emerged as a central regulator of adipose tissue function and formation. Despite the identification of numerous PPARgamma targets involved in a range of processes, from lipid droplet formation to adipokine secretion, information is still lacking on targets downstream of PPARgamma that directly affect fat cell differentiation. Here we identify HRASLS3 as a novel PPARgamma regulated gene with a role in adipogenesis. HRASLS3 expression increases during the differentiation of preadipocyte cell lines and is highly expressed in white and brown adipose tissue in mice. HRASLS3 expression is induced by PPARgamma ligands in preadipocyte cell lines as well in adipose tissue in vivo. We demonstrate that the HRASLS3 promoter contains a functional PPAR response element and is a direct target for regulation by PPARgamma/RXR heterodimers. Finally, we show that overexpression of HRASLS3 augments PPARgamma-driven lipid accumulation and adipogenesis, whereas siRNA-mediated knockdown of HRASLS3 expression decreases differentiation. Together, these results identify HRASLS3 as one of the downstream effectors of PPARgamma action in adipogenesis.  相似文献   
26.
27.
28.
Objectives: Obesity is an important risk factor for the development of insulin resistance and type 2 diabetes. Recently, a newly described circulating hormone resistin, which is expressed primarily in adipocytes, has been shown to antagonize insulin action in mice. Resistin, therefore, has been suggested to play a role in the pathogenesis of insulin resistance. Research Methods and Procedures: We studied the expression of the resistin gene in primary cultured human adipocytes and preadipocytes. We also examined resistin gene expression in subcutaneous abdominal adipocytes in women (n = 24) over a wide range of body weight and insulin sensitivity. Results: Whereas resistin gene expression was barely detectable in mature adipocytes, it was highly expressed in preadipocytes. Adipogenic differentiation of preadipocytes was associated with a time-dependent down-regulation of resistin gene expression. There was no relationship between body weight, insulin sensitivity, or other metabolic parameters and adipocyte resistin gene expression in the clinical study. Discussion: Together these findings do not support an important role of adipose-tissue resistin gene expression in human insulin resistance.  相似文献   
29.
The objective of this study was to determine whether altered maternal energy supply during mid-gestation results in differences in muscle histology or genes regulating fetal adipose and muscle development. In total, 22 Angus cross-bred heifers (BW=527.73±8.3 kg) were assigned randomly to the three dietary treatments providing 146% (HIGH; n=7), 87% (INT; n=7) or 72% (LOW; n=8) of the energy requirements for heifers from day 85 to day 180 of gestation. Fetuses were removed via cesarean section at day 180 of gestation and longissimus muscle (LM) and subcutaneous fat were collected and prepared for analysis of gene expression. Samples from the LM and semitendinosus (ST) were evaluated for muscle fiber diameter, area and number. The right hind limb was dissected and analyzed to determine compositional analysis. Fetal growth and muscle histology characteristics of the LM and ST were similar among treatments. Preadipocyte factor-1 expression was up-regulated in fetal LM (P<0.05) of HIGH fetuses as compared with INT, whereas LOW fetuses showed increased CCAAT/enhancer-binding protein-β (C/EBP-β) expression in LM as compared with INT (P<0.05). Peroxisome proliferator-activated receptor γand C/EBP-α did not differ as a result of dietary treatment in LM or subcutaneous fat samples. There was a tendency for increased expression of fatty acid synthase in LM of LOW fetuses as compared with INT (P<0.10). Myogenin was more highly expressed (P<0.05) in LM of the LOW fetuses, whereas μ-calpain expression was increased in the HIGH treatment compared with INT. A tendency for increased expression of IGF-II was observed for both LOW and HIGH fetuses compared with INT (P<0.10). Expression of stearoyl-CoA desaturase, myoblast determination protein 1, myogenic factor 5, myogenic regulatory factor-4, m-calpain, calpastatin, IGF-I and myostatin was similar between treatments. Collectively, these results suggest that fetal growth characteristics are not affected by the level of maternal nutritional manipulation imposed in this study during mid-gestation. However, differences in expression of fetal genes regulating adipose and muscle tissue growth and development could lead to differences in postnatal composition and warrants further investigation.  相似文献   
30.
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号