首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   26篇
  国内免费   6篇
  2024年   2篇
  2023年   6篇
  2022年   10篇
  2021年   16篇
  2020年   21篇
  2019年   16篇
  2018年   16篇
  2017年   9篇
  2016年   10篇
  2015年   15篇
  2014年   21篇
  2013年   20篇
  2012年   19篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2008年   9篇
  2007年   18篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1994年   1篇
  1992年   2篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
161.
Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.  相似文献   
162.
长链非编码RNA(long noncoding RNA,lncRNA)是一种广泛存在于动植物中、长度大于200个核苷酸且不能编码蛋白的RNA。近年来,随着高通量基因组测序技术的不断发展,研究者们对lncRNA的关注度越来越高,通过对lncRNA的深入研究,证实其在细胞分化、表观遗传、细胞周期调控等众多生命活动中发挥重要作用,并且很多疾病的发生、发展过程都与之相关。借助于高通量测序或芯片技术,已经证实许多lncRNA与脂肪组织的生成、发育和代谢调控有关,在脂肪发育的过程中起着重要的作用。通过对脂肪发育相关lncRNA的研究可以更好地了解脂肪的发育、代谢过程,同时为代谢疾病的临床治疗提供新的方法。基于此,对lncRNA作用模式、调控脂肪发育以及其对肥胖相关代谢疾病的影响等研究展开综述,以期为脂肪发育与代谢研究提供理论指导。  相似文献   
163.
164.
165.
166.
Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role of an endoribonuclease, endoribonuclease L (RNase L), using wild-type and RNase L-knockout mouse embryonic fibroblasts (RNase L(-/-)-MEFs). Here, we identify C/EBP homologous protein 10 (CHOP10), a dominant negative member of the CCAAT/enhancer-binding protein family, as a specific RNase L target. We show that RNase L is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present an expanded adipose tissue, which, however, is unable to correctly store lipids, illustrated by ectopic lipids storage in the liver and in the kidney. These findings highlight RNase L as an essential regulator of adipogenesis via the regulation of CHOP10 mRNA.  相似文献   
167.
Myostation (MSTN), which is primarily expressed in muscle, plays an important role in myogenic and adipogenic cells. However, there is little information about whether MSTN displays different roles between adipose-derived stem cells (ADSCs) and muscle satellite cells (MSCs). The two kinds of cells can both exist in the muscle and differentiate into adiposities. In this research, we isolated ADSCs and MSCs from porcine fat tissues and semitendinosus muscle, respectively, to investigate the effect of MSTN on the adipogenesis of those cells. ADSCs and MSCs were treated with recombinant human MSTN during the induction of adipogenesis or before the induction of differentiation. Then, we evaluated adipogenesis by Oil Red O staining and assessed the expression patterns of adipocyte-specific fatty acid binding protein (aP2) and peroxisome proliferator-activated receptor (PPAR) γ using real-time polymerase chain reaction methods. Our results indicated that the treatment with MSTN before or during the induction of differentiation in MSCs could both inhibit the adipogenesis. However, the treatment with MSTN only during the induction of differentiation in ADSCs could suppress the adipogenesis. Those results showed that MSTN had different roles in the adipogenesis of ADSCs and MSCs. It can shed new light on the origin of adipocyte located in muscle.  相似文献   
168.
Hedgehog is an important morphogenic signal that directs pattern formation during embryogenesis, but its activity also remains present through adult life. It is now becoming increasingly clear that during the reproductive phase of life and beyond it continues to direct cell renewal (which is essential to combat the chronic environmental stress to which the body is constantly exposed) and counteracts vascular, osteolytic and sometimes oncological insults to the body. Conversely, down-regulation of hedgehog signalling is associated with ageing-related diseases such as type 2 diabetes, neurodegeneration, atherosclerosis and osteoporosis. Hence, in this essay we argue that hedgehog signalling is not only important at the start of life, but also constitutes an important anti-geriatric influence, and that enhanced understanding of its properties may contribute to developing rational strategies for healthy ageing and prevention of ageing-related diseases. Also watch the Video Abstract.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号