首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2243篇
  免费   85篇
  国内免费   53篇
  2023年   19篇
  2022年   15篇
  2021年   35篇
  2020年   42篇
  2019年   70篇
  2018年   88篇
  2017年   28篇
  2016年   35篇
  2015年   46篇
  2014年   146篇
  2013年   167篇
  2012年   87篇
  2011年   110篇
  2010年   75篇
  2009年   86篇
  2008年   82篇
  2007年   97篇
  2006年   70篇
  2005年   78篇
  2004年   58篇
  2003年   60篇
  2002年   44篇
  2001年   39篇
  2000年   41篇
  1999年   37篇
  1998年   35篇
  1997年   47篇
  1996年   23篇
  1995年   19篇
  1994年   17篇
  1993年   18篇
  1992年   20篇
  1991年   18篇
  1990年   25篇
  1989年   14篇
  1988年   13篇
  1987年   18篇
  1985年   29篇
  1984年   43篇
  1983年   35篇
  1982年   45篇
  1981年   39篇
  1980年   41篇
  1979年   49篇
  1978年   40篇
  1977年   41篇
  1976年   29篇
  1975年   16篇
  1974年   17篇
  1973年   20篇
排序方式: 共有2381条查询结果,搜索用时 167 毫秒
111.
Four highly acylated diterpenoids, designated as pierisformotoxins A–D ( 1 – 4 , resp.), along with 26 known compounds, were isolated from the flowers of Pieris formosa. Among them, pierisformotoxins A and B ( 1 and 2 , resp.) were new highly acylated grayanane diterpenoids, of which the five‐membered ring A has undergone an oxidative cleavage between C(3) and C(4), followed by lactonization, to give rise to a five‐membered lactone ring between C(3) and C(5), differing from the previously reported grayanane diterpenoids with a 5/7/6/5 ring system. Results of the cAMP‐regulation‐activity assay showed that pierisformotoxin C ( 3 ) at 10 μM (inhibitory ratio (IR): 10.1%) or 2 μM (9.8%), and pierisformotoxin B ( 2 ) at 50 μM (13.9%) significantly decreased the cAMP level in N1E‐115 neuroblastoma cells (p<0.05).  相似文献   
112.
In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure.  相似文献   
113.
Based on bioinformatics interrogation of the genome, > 500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4′-methyl-N2-3-pyridinyl-4,5′-bi-1,3-thiazole-2,2′-diamine (JNK Docking (JD) compound 123, but not the related compound (4′-methyl-N ~ 2 ~ -(6-methyl-2-pyridinyl)-4,5′-bi-1,3-thiazole-2,2′-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10 μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.  相似文献   
114.
115.
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1−/− mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.  相似文献   
116.
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5′-adenosyl)- l -methionine (SAM) and 5′-deoxy-5′-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.  相似文献   
117.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号