首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   16篇
  国内免费   22篇
  2023年   8篇
  2022年   18篇
  2021年   10篇
  2020年   23篇
  2019年   29篇
  2018年   39篇
  2017年   11篇
  2016年   10篇
  2015年   18篇
  2014年   84篇
  2013年   71篇
  2012年   50篇
  2011年   72篇
  2010年   54篇
  2009年   56篇
  2008年   44篇
  2007年   42篇
  2006年   40篇
  2005年   51篇
  2004年   20篇
  2003年   18篇
  2002年   16篇
  2001年   14篇
  2000年   7篇
  1999年   7篇
  1998年   20篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1987年   3篇
  1986年   5篇
  1985年   17篇
  1984年   24篇
  1983年   13篇
  1982年   17篇
  1981年   13篇
  1980年   10篇
  1979年   17篇
  1978年   12篇
  1977年   17篇
  1976年   13篇
  1975年   6篇
  1974年   9篇
  1973年   12篇
  1971年   3篇
排序方式: 共有1088条查询结果,搜索用时 15 毫秒
151.
Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained.In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37°C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant ~2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.  相似文献   
152.
An eightfold auxotrophic strain of Bacillus subtilis was constructed. It was about equally well transformable for all markers. When this strain was used as recipient in transformation, single marker transformation frequencies of 0.5–2.0% were obtained. The markers were located relatively to each other using marker frequency analysis. Two UV-sensitive derivatives, equally well transformable as the parental multiple auxotroph, were isolated. One was highly sensitive to UV irradiation, was host cell reactivation-negative and did not show DNA breakdown or recovery of DNA synthesis after exposure to UV. Using UV-inactivated transforming DNA, this strain's transformability was strongly reduced as compared with both the UV-resistant parental strain and the other, moderately UV-sensitive, strain.  相似文献   
153.
Ultraviolet inactivation of transforming Bacillus subtilis markers was studied with the aid of an eightfold auxotrophic recipient and its excision-repair-deficient derivative. The results allow the following conclusions. (i) Wild-type B. subtilis cells are able to repair approx. 80% of the UV-induced lesions causing inactivation of transforming activity in UV-sensitive recipients; (ii) Saturating amounts of donor DNA increase the apparent marker sensitivities. This phenomenon is most pronounced in transformation of UV-sensitive recipients; (iii) various markers are inactivated to different degrees, both when assayed on the wild-type as well as on the UV-sensitive strain; (iv) Various markers are repaired to different degrees in the wild-type recipient.  相似文献   
154.
155.
Purification and properties of human liver monoamine oxidase   总被引:2,自引:0,他引:2  
Human liver monoamine oxidase [monoamine: O2 oxidoreductase (deaminating), E. C. 1.4.3.4] was purified by a method which does not depend on the isolation of mitochondria, and in which vacuum dialysis, during which the enzyme separates out as a yellow precipitate, is an important step in purification. By this method a final specific activity of 550 and fold purification of 40 was attained. A single peak was obtained with the analytical ultracentrifuge, and a sedimentation constant of 6.78S noted. A single active band was observed by polyacrylamide gel electrophoresis. The enzyme exhibits optimum activity at pH 8.7, with no activity below pH 5.5 or above pH 11.8. Using benzylamine hydrobromide as the substrate, in 0.05 m phosphate buffer (pH 7.4) at 27 °C, the Michaelis constant was found to be 1.7 × 10?3m. The enzyme, which is quite stable, is a flavo-protein, as shown by absorption and fluorescence spectra. The C-terminal group is glycine. The molecular weight, as determined by SDS polyacrylamide-gel electrophoresis, is 64,000. Repeated attempts to determine the N-terminal group were unsuccessful.  相似文献   
156.
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine–cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs.  相似文献   
157.
158.
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through ST...  相似文献   
159.
160.
Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+‐dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号