首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   4篇
  国内免费   1篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   23篇
  2012年   4篇
  2011年   6篇
  2010年   10篇
  2009年   6篇
  2008年   6篇
  2007年   14篇
  2006年   5篇
  2005年   9篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
排序方式: 共有176条查询结果,搜索用时 859 毫秒
91.
The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging mechanism of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) was studied. We found two undefined products, named X and Y, in the reaction mixture of AA-2G and the DPPH radical under acidic conditions by HPLC analysis. The reaction mixture was further subjected to LC–MS analysis. X was found to be a covalent adduct of AA-2G and the DPPH radical. On the other hand, Y could not be identified, probably because it was a mixture. A time-course study of the radical-scavenging reaction revealed that one molecule of AA-2G scavenged one molecule of DPPH radical to generate an AA-2G radical, which readily reacted with another molecule of the DPPH radical to form a covalent adduct (X). Subsequently, this adduct slowly quenched a third molecule of the DPPH radical, resulting in reaction products (Y). Therefore, one molecule of AA-2G has only one oxidizable –OH group, but can scavenge three molecules of the DPPH radical. The radical-scavenging mechanism of AA-2G elucidated in this study should be useful in understanding the biological roles of AA-2G per se in the food and cosmetic fields.  相似文献   
92.
In the alkaliviscogram of starch of 26 nonwaxy rices grown in the tropics, gelatinization normality correlated positively with final gelatinization temperature (BEPT) of starch (r=0.969**) and negatively with alkali spreading value of milled rice (r= ?0.931**). Peak viscosity was not linearly related to amylose content. Among samples of rice starch having a high amylose (>28%) content, peak viscosity was correlated with the gel consistency of starch (r=?0.690**) and of milled rice (r=?0.644**) (n = 18). These high-amylose starches showed the widest variation in peak viscosity. Amylose content, and gel consistency were inherited from the same parent in all nine varieties and lines studied, whereas peak viscosity, gelatinization normality and the final BEPT were inherited from either parent. The starch of five waxy rices showed higher peak viscosities even at a concentration of 1.8% as compared with a 2.0% nonwaxy rice starch.  相似文献   
93.
Heterocyclic aromatic amines (HAAs) are produced during cooking of proteinaceous food such as meat and fish. Humans eating a normal diet are regularly exposed to these food-borne substances. HAAs have proved to be carcinogenic in animals and to induce early lesions in the development of cancer. DNA adduct levels in mouse liver have been measured by 32P-HPLC after oral administration each of 14 different HAAs. The highest DNA adduct levels were detected for 3-amino-1-methyl-5H-pyrido[4,3-b]-indole (Trp-P-2), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AαC), respectively. To assess a relative risk in a human population, a relative risk index was calculated by combining the DNA adduct levels in mouse liver with human daily intake of heterocyclic amines in a US and in a Swedish population. Such calculations suggest that AαC presents the highest risk for humans, e.g. nine-fold higher compared with the most abundant amines in food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). Therefore, the distribution of DNA adducts in different tissues of mouse was investigated after oral administration of AαC. The highest AαC–DNA adduct levels were found in liver (137 adducts/108 normal nucleotides) followed by heart, kidney, lung, large intestine, small intestine, stomach and spleen, in descending order. To characterize the chemical structure of the major DNA adduct, chemical synthesis was performed. The major DNA adduct from the in vivo experiments was characterized by five different methods. On the basis of these results, the adduct was characterized as N2-(deoxyguanin-8-yl)-2-amino-9H-pyrido[2,3-b]indole. Considering the abundance of AαC not only in grilled meat, but also in other products like grilled chicken, vegetables and cigarette smoke and in light of the results of the present study, it is suggested that the human cancer risk for AαC might be underestimated.  相似文献   
94.
It has been previously reported that the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) can form stable radical adducts with superoxide radical. However, the presence of diastereomers of DEPMPO radical adducts and the appearance of superhyperfine structure complicates the interpretation of the ESR spectra. It has been suggested that the superhyperfine structure in the ESR spectrum of DEPMPO/?OOH is a result of conformational exchange between conformers. The analysis of the temperature dependence of the ESR spectrum of DEPMPO/?OOH and of its structural analog DMPO/?OOH have demonstrated that both ESR spectra contain exchange effects resulting from conversion between two conformers. Computer simulation calculates a conformer lifetime on the order of 0.1?μs for DMPO/?OOH at room temperature. However, temperature dependence of the ESR spectrum of DEPMPO/?OOH suggests that superhyperfine structure does not depend on the conformational exchange. We have now found that the six-line ESR spectrum with superhyperfine structure should be assigned to a DEPMPO-superoxide-derived decomposition product. Therefore, ESR spectra previously assigned to DEPMPO/?OOH contain not only the two diastereomers of DEPMPO/?OOH but also the decomposition product, and these spectra should be simulated as a combination of four species: two conformers of the first diastereomer, one conformer of the second diastereomer and the superoxide-derived decomposition product. The presence of four species has been supported by the temperature dependence of the ESR spectra, nucleophilic synthesis of radical adducts, and isotopic substitution experiments. It is clear that to correctly interpret DEPMPO spin trapping of superoxide radicals, one must carefully consider formation of secondary radical adducts.  相似文献   
95.
A novel cyclolignanic quinone, 7-acetyl-3′,4′-didemethoxy-3′,4′-dioxopodophyllotoxin (CLQ), inhibits topoisomerase II (TOPO II) activity. The extent of this inhibition was greater than that produced by the etoposide quinone (EQ) or etoposide. Glutathione (GSH) reduces EQ and CLQ to their corresponding semiquinones under anaerobic conditions. The latter were detected by EPR spectroscopy in the presence of MgCl2 but not in its absence. Semiquinone EPR spectra change with quinone/GSH mol ratio, suggesting covalent binding of GSH to the quinones. Quinone-GSH covalent adducts were isolated and identified by ESI-MS. These orthoquinones also react with nucleophilic groups from BSA to bind covalently under anaerobic conditions. BSA thiol consumption and covalent binding by these quinones are enhanced by MgCl2. Complex formation between the parent quinones and Mg+2 was also observed. Density functional calculations predict the observed blue-shifts in the absorption spectra peaks and large decreases in the partial negative charge of electrophilic carbons at the quinone ring when the quinones are complexed to Mg+2. These observations suggest a possible role of Mg+2 chelation by these quinones in increasing TOPO II thiol and/or amino/imino reactivity with these orthoquinones.  相似文献   
96.
5′-R and 5′-S diastereoisomers of 8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG) containing a base-sugar covalent bond are formed by hydroxyl radicals. R-cdA and S-cdA are repaired by nucleotide excision repair (NER) in mammalian cellular extracts. Here, we have examined seven purified base excision repair enzymes for their ability to repair S-cdG or S-cdA. We could not detect either excision or binding of these enzymes on duplex oligonucleotide substrates containing these lesions. However, both lesions were repaired by HeLa cell extracts. Dual incisions by human NER on a 136-mer duplex generated 24–32 bp fragments. The time course of dual incisions were measured in comparison to cis-anti-B[a]P-N2-dG, an excellent substrate for human NER, which showed that cis-anti-B[a]P-N2-dG was repaired more efficiently than S-cdG, which, in turn, was repaired more efficiently than S-cdA. When NER efficiency of S-cdG with different complementary bases was investigated, the wobble pair S-cdG·dT was excised more efficiently than the S-cdG·dC pair that maintains nearly normal Watson-Crick base pairing. But S-cdG·dA mispair with no hydrogen bonds was excised less efficiently than the S-cdG·dC pair. Similar pattern was noted for S-cdA. The S-cdA·dC mispair was excised much more efficiently than the S-cdA·dT pair, whereas the S-cdA·dA pair was excised less efficiently. This result adds to complexity of human NER, which discriminates the damaged base pairs on the basis of multiple criteria.  相似文献   
97.
《Biomarkers》2013,18(6):508-515
4,4′-Methylenediphenyl diisocyanate (MDI) is the most important of the isocyanates used as intermediates in the chemical industry. Among the main types of damage after exposure to low levels of MDI are lung sensitization and asthma. Albumin adducts of MDI might be involved in the etiology of sensitization reactions. This work presents a liquid chromatography (LC)–mass spectrometry (MS/MS) procedure for determination of isocyanate-specific albumin adducts in humans. MDI formed adducts with lysine of albumin: MDI–Lys and AcMDI–Lys. The MDI–Lys levels, 25th, 50th, 75th, 90th percentile, were 0, 65.2, 134, 244?fmol mg?1 and 0, 30.5, 57.4, 95.8?fmol mg?1 in the exposed construction and factory workers, respectively. This new biomonitoring procedure will allow assessment of suspected exposure sources and may contribute to the identification of individuals who are particularly vulnerable for developing bronchial asthma and other respiratory diseases after exposure to isocyanates.  相似文献   
98.
Acrolein (Acr), a hazardous air pollutant, reacts readily with deoxyguanosine (dG) in DNA to produce cyclic 1, N2-propanodeoxyguanosine adducts (Acr-dG). Studies demonstrate that these adducts are detected in vivo and may play a role in mutagenesis and carcinogenesis. In the study described here, a quantitative 32P-postlabeling/solid-phase extraction/HPLC method was developed by optimizing the solid-phase extraction and the 32P-postlabeling conditions for analysis of Acr-dG in DNA samples with a detection limit of 0.1 fmol. It was found that Acr-dG can form as an artifact during the assay. Evidence obtained from mass spectrometry indicates that the Acr in water used in the assay is a likely source of artifact formation of Acr-dG. The formation of Acr-dG as an artifact can be effectively blocked by adding glutathione (GSH) to the DNA sample to be analyzed. In addition, Acr-dG was detected as a contaminant in the commercial dG and dT 3'-monophosphate samples. Finally, this method was used to detect Acr-dG in calf thymus and human colon HT29 cell DNA with an excellent linear quantitative relationship.  相似文献   
99.
A mixed ligand and dimeric CuII complex [(phen)2Cu(μ-L)Cu(phen)2]L · 12.5H2O (H2L = succinic acid) containing bridging succinate moiety and also non-coordinated succinate dianion was prepared from polymeric Cu(II) succinate by nucleophilic reaction with o-phenanthroline (phen) followed by depolymerization. The dimeric product was characterized by crystallographic, spectroscopic and thermoanalytical studies. The complex crystallizes in triclinic crystal system and is composed of succinate bridged [(phen)2Cu(μ-L)Cu(phen)2]2+ complex cations, non-coordinated succinate anions and hydrogen bonded water molecules. Within the dimeric cationic unit, each of the Cu atoms is octahedrally coordinated by four N atoms of both phen ligands and both O atoms of a carboxylate moiety of the bridging succinate group in chelating form. Through intermolecular π-π stacking interactions, the complex cations form positively charged 2-D layers, between which the non-coordinating succinate anions and water molecules are sandwiched. Both the electronic and EPR studies indicate that the dimeric complex undergoes partial dissociation in solution state to exist in two structural forms. The kinetic and thermodynamic parameters involved in three stage thermal decompositions of the dimeric complex could also be evaluated using Coats-Redfern method.  相似文献   
100.
Using the 32P-postlabeling assay, we investigated the ability of quaternary benzo[c]phenanthridine alkaloids, sanguinarine, chelerythrine and fagaronine, to form DNA adducts in vitro. Two enhanced versions of the assay (enrichment by nuclease P1 and 1-butanol extraction) were utilized in the study. Hepatic microsomes of rats pre-treated with β-naphthoflavone or those of uninduced rats, used as metabolic activators, were incubated in the presence of calf thymus DNA and the alkaloids, with NADPH used as a cofactor. Under these conditions sanguinarine and chelerythrine, but not fagaronine, formed DNA adducts detectable by 32P-postlabeling. DNA adduct formation by both alkaloids was found to be concentration dependent. When analyzing different atomic and bond indices of the C11---C12 bond (ring B) in alkaloid molecules we found that fagaronine behaved differently from sanguinarine and chelerythrine. While sanguinarine and chelerythrine showed a preference for electrophilic attack indicating higher potential to be activated by cytochrome P450, fagaronine exhibited a tendency for nucleophilic attack. Our results demonstrate that sanguinarine and chelerythrine are metabolized by hepatic microsomes to species, which generate DNA adducts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号